944 resultados para Waste water treatment plants
Resumo:
In this paper, the microbial characteristics of the granular sludge in the presence of oxygen (3.0 +/- 0.7 mg O-2 1(-1)) were analyzed using molecular biology techniques. The granules were provided by an upflow anaerobic sludge blanket (UASB) operated over 469 days and fed with synthetic substrate. Ethanol and sulfate were added to obtain different COD/SO42- ratios (3.0, 2.0, and 1.6). The results of fluorescent in situ hybridization (FISH) analyses showed that archaeal cells, detected by the ARC915 probe, accounted for 77%, 84%, and 75% in the COD/SO42- ratios (3.0, 2.0, and 1.6, respectively). Methanosaeta sp. was the predominant acetoclastic archaea observed by optical microscopy and FISH analyses, and confirmed by sequencing of the excised bands of the DGGE gel with a similarity of 96%. The sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris (similarity of 99%) was verified by sequencing of the DGGE band. Others identified microorganism were similar to Shewanella sp. and Desulfitobacterium hafniense, with similarities of 95% and 99%, respectively. These results confirmed that the presence of oxygen did not severely affect the metabolism of microorganisms that are commonly considered strictly anaerobic. We obtained mean efficiencies of organic matter conversion and sulfate reducing higher than 74%. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A laboratory scale activated sludge sequencing batch reactor was operated in order to obtain total removal of influent ammonia (200; 300 and 500 mg NH(3)-N.L(-1)) with sustained nitrite accumulation at the end of the aerobic stages with phenol (1,000 mg C(6)H(5)OH.L(-1)) as the carbon source for denitrifying microorganisms during the anoxic stages. Ammonia removal above 95% and ratios of (NO(2)(-)-N / (NO(2)(-)-N + NO(3)(-)-N)) ranging from 89 to 99% were obtained by controlling the dissolved oxygen concentration (1.0 mg O(2).L(-1)) and the pH value of 8.3 during the aerobic stages. Phenol proved to be an adequate source of carbon for nitrogen removal via nitrite with continuous feeding throughout part of the anoxic stage. Nitrite concentrations greater than 70.0 mg NO(2)(-)-N.L(-1) inhibited the biological denitritation process.
Resumo:
The aim of this work is the study of batch liquid-liquid extraction of phenol from aqueous solutions in a bench-scale well-mixed reactor. The influence of the ratio of phase volumes, temperature, and rotational speed on phenol removal (0.72-1.1% w/w) was investigated using methyl isobutyl ketone as an extracting solvent. For this purpose, the ratio of phase volumes were set at 0.1 and 0.2, the temperature at 10, 20, and 30 degrees C, and the rotational speed at 300, 400, and 500 rpm. A physical model based on the material balance of the phases as well as the equation of mass flux between the phases allowed the estimation of the overall coefficient of mass transfer coupled with the superficial area. Moreover, it proved to fit, satisfactorily well, the experimental data of residual phenol concentration in the organic phase versus time under all the conditions investigated.
Resumo:
The controlled disposal of tannery sludge in agricultural soils is a viable alternative for recycling such waste; however, the impact of this practice on the arbuscular mycorrhizal fungi (AMF) communities is not well understood. We studied the effects of low-chromium tannery sludge amendment in soils on AMF spore density, species richness and diversity, and root colonization levels. Sludge was applied at four doses to an agricultural field in Rolandia, Parana state, Brazil. The sludge was left undisturbed on the soil surface and then the area was harrowed and planted with corn. The soil was sampled at four intervals and corn roots once within a year (2007/2008). AMF spore density was low (1 to 49 spores per 50 cm(3) of soil) and decreased as doses of tannery sludge increased. AMF root colonization was high (64%) and unaffected by tannery sludge. Eighteen AMF species belonging to six genera (Acaulospora, Glomus, Gigaspora, Scutellospora, Paraglomus, and Ambispora) were recorded. At the sludge doses of 9.0 and 22.6 Mg ha(-1), we observed a decrease in AMF species richness and diversity, and changes in their relative frequencies. Hierarchical grouping analysis showed that adding tannery waste to the soil altered AMF spore community in relation to the control, modifying the mycorrhizal status of soil and selectively favoring the sporulation of certain species.
Resumo:
The scope of this research work was to investigate biogas production and purification by a two-step bench-scale biological system, consisting of fed-batch pulse-feeding anaerobic digestion of mixed sludge, followed by methane enrichment of biogas by the use of the cyanobacterium Arthrospira platensis. The composition of biogas was nearly constant, and methane and carbon dioxide percentages ranged between 70.5-76.0% and 13.2-19.5%, respectively. Biogas yield reached a maximum value (about 0.4 m(biogas)(3)/kgCOD(i)) at 50 days-retention time and then gradually decreased with a decrease in the retention time. Biogas CO(2) was then used as a carbon source for A. platensis cultivation either under batch or fed-batch conditions. The mean cell productivity of fed-batch cultivation was about 15% higher than that observed during the last batch phase (0.035 +/- 0.006 g(DM)/L/d), likely due to the occurrence of some shading effect under batch growth conditions. The data of carbon dioxide removal from biogas revealed the existence of a linear relationship between the rates of A. platensis growth and carbon dioxide removal from biogas and allowed calculating carbon utilization efficiency for biomass production of almost 95%. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we verified the possible role of cyclophosphamide (CY) in protecting or not against neuronal losses in young and aged male Calomys callosus chronically infected with the MORC-1 strain of Trypanosoma cruzi through numerical quantification of neurons from the myenteric plexus of the colon and quantification of nitric-oxide concentration (NO) during the acute and chronic phase of infection. For this purpose, groups of young C. callosus were infected with the MORC-1 strain of T. cruzi. A group of infected animals received i.p. 0.2 mg/ml genuxal dissolved in distilled water treatment with CY. NO concentration in aged animals displayed reduced levels when compared to those found in young animals. No significant alterations in the number of neurons were observed in young animals, but for aged ones, a protective role of CY in reducing neuron loss was noted, in addition to enhancing the neuronal volume, area, and perimeter. These results suggest that CY administration, depending on the dose and time span, can act as a protective agent against neuronal losses.
Resumo:
A heterogeneous copper catalyst supported on mesoporous MCM-41 was developed. The parent MCM-41 has a large pore area of over 1400 m(2)/g. Copper was chosen as the active element of catalyst and loaded into MCM-41 by adsorption at ambient temperature. The prepared catalysts were evaluated in the catalytic wet oxidation of phenol solution with an initial concentration of 1,300 ppm at 150 and 200 degreesC. The catalyst was found to be of high catalytic activity. It is also shown that the catalyst with a higher copper loading exhibits higher ability of accelerating the catalytic reaction to certain extent but reaches its constant level afterwards. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The prevalence of colonization with the anaerobic intestinal spirochaetes Brachyspira aalborgi and Brachyspira pilosicoli was investigated in humans (n = 316) and dogs (n = 101) living on three tea estates in Assam, India. Colonization was detected using PCR on DNA from faeces. Nineteen (6%) human faecal samples contained B. aalborgi DNA, 80 (25.3%) contained B. pilosicoli DNA, and 10 (3.2%) contained DNA from both species. One canine sample contained DNA from B. pilosicoli. Significant factors for B. aalborgi colonization in logistic regression were: infection of family members with B. aalborgi (P < 0.001), being a resident of Balipara (P = 0.03), and use of water treatment (P = 0.03). For B. pilosicoli, significant factors were: other family members being positive for B. pilosicoli (P < 0.001), water obtained from a well (P = 0.006), water treatment (P = 0.03), and not having visited a doctor in the previous 12 months (P = 0.03).
Resumo:
A glasshouse study examined 49 diverse sorghum lines for variation in transpiration efficiency. Three of the 49 lines grown were Sorghum spp, native to Australia; one was the major weed Johnson grass (Sorghum halepense), and the remaining 45 lines were cultivars of Sorghum bicolor. All plants were grown under non-limiting water and nutrient conditions using a semi-automatic pot watering system designed to facilitate accurate measurement of water use. Plants were harvested 56-58 days after sowing and dry weights of plant parts were determined. Transpiration efficiency differed significantly among cultivars. The 3 Australian native sorghums had much lower transpiration efficiency than the other 46 cultivars, which ranged from 7.7 to 6.0 g/kg. For the 46 diverse cultivars, the ratio of range in transpiration efficiency to its l.s.d. was 2.0, which was similar to that found among more adapted cultivars in a previous study. This is a significant finding as it suggests that there is likely to be little pay-off from pursuing screening of unadapted material for increased variation in transpiration efficiency. It is necessary, however, also to examine absolute levels of transpiration efficiency to determine whether increased levels have been found. The cultivar with greatest transpiration efficiency in this study (IS9710) had a value 9% greater (P < 0.05) than the accepted standard for adapted sorghum cultivars. The potential impact of such an increase in transpiration efficiency warrants continued effort to capture it. Transpiration efficiency has been related theoretically and experimentally to the degree of carbon isotope discrimination in leaf tissue in sorghum, which thus offers a relatively simple selection index. In this study, the variation in transpiration efficiency was not related simply to carbon isotope discrimination. Significant associations of transpiration efficiency with ash content and indices of photosynthetic capacity were found. However, the associations were not strong. These results suggest that a simple screening technique could not be based on any of the measures or indices analysed in this study. A better understanding of the physiological basis of the observed genetic differences in transpiration efficiency may assist in developing reliable selection indices. It was concluded that the potential value of the improvement in transpiration efficiency over the accepted standard and the degree of genetic variation found warrant further study on this subject. It was suggested that screening for genetic variation under water-limiting conditions may provide useful insights and should be pursued.
Resumo:
Cylindrospermopsis raciborskii produces the cyanotoxin cylindrospermopsin, which is commonly found in SouthEast Queensland water reservoirs, and has been responsible for the closure of these reservoirs as a source of drinking water in recent times. Thus, alternative more effective treatment methods need to be investigated for the removal of toxins such as cylindrospermopsin. This study examined the effectiveness of two brands of titanium dioxide under UV photolysis for the degradation of cylindrospermopsin. Results indicate that titanium dioxide is an efficient photocatalyst for cylindrospermopsin degradation. The titanium dioxide (TiO2), brand Degussa P-25 was found to be more efficient than the alternate brand Hombikat UV-100. There was an influence from solution pH (4, 7, and 9) with both brands of titanium dioxide, with high pH resulting in the best degradation rate. Importantly, there was no adsorption of cylindrospermopsin to titanium dioxide particles as seen with other cyanotoxins, which would adversely influence the degradation rate. Degradation rates were not influenced by temperature (19-34 degreesC) when P-25 was the source of TiO2, some temperature influence was observed with UV-100. Dissolved organic carbon concentration will reduce the efficiency of titanium dioxide for cylindrospermopsin degradation, however the presence of other inorganic matter in natural waters greatly assists the photocatalytic process. With minimal potentially toxic by-product formation expected with this treatment, and the effective degradation of cylindrospermopsin, titanium dioxide UV photolysis is a promising speculative alternative water treatment method. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
An outbreak of acute liver failure occurred at a dialysis center in Caruaru, Brazil (8 degrees 17 'S, 35 degrees 58 'W), 134 km from Recife, the state capital of Pernambuco. At the clinic, 116 (89%) of 131 patients experienced visual disturbances, nausea, and vomiting after routine hemodialysis treatment on 13-20 February 1996. Subsequently, 100 patients developed acute liver failure, and of these 76 died. As of December 1996, 52 of the deaths could be attributed to a common syndrome now called Caruaru syndrome. Examination of phytoplankton from the dialysis clinic's water source, analyses of the clinic's water treatment system, plus serum and liver tissue of clinic patients led to the identification of two groups of cyanobacterial toxins, the hepatotoxic cyclic peptide microcystins and the hepatotoxic alkaloid cylindrospermopsin. Comparison of victims' symptoms and pathology using animal studies of these two cyanotoxins leads us to conclude that the major contributing factor to death of the dialyses patients was intravenous exposure to microcystins, specifically microcystin-YR, -LR, and -AR. From liver concentrations and exposure volumes, it was estimated that 19.5 mug/L microcystin was in the water used for dialysis treatments. This is 19.5 times the level set as a guideline for safe drinking water supplies by the World. Health Organization.
Resumo:
The anaerobic ammonium oxidation process is a new process for ammonia removal from wastewater. It is also a new microbial physiology that was previously believed to be impossible. The identification of Candidatus Brocadia anammoxidans and its relatives as the responsible bacteria was only possible with the development of a new experimental approach. That approach is the focus of this paper. The approach is a modernisation of the Winogradsky/Beyerinck strategy of selective enrichment and is based on the introduction of the molecular toolbox and modern bioreactor engineering to microbial ecology. It consists of five steps: (1) postulation of an ecological niche based on thermodynamic considerations and macro-ecological field data; (2) engineering of this niche into a laboratory bioreactor for enrichment culture; (3) black-box physiological characterisation of the enrichment culture as a whole; (4) phylogenetic characterisation of the enriched community using molecular tools; (5) physical separation of the dominant members of the enrichment culture using gradient centrifugation and the identification of the species of interest in accordance with Koch's postulates; (6) verification of the in situ importance of these species in the actual ecosystems. The power of this approach is illustrated with a case study: the identification of the planctomycetes responsible for anaerobic ammonium oxidation. We argue that this was impossible using molecular ecology or conventional 'cultivation based techniques' alone. We suggest that the approach might also be used for the microbiological study of many interesting microbes such as anaerobic methane oxidisers.
Resumo:
It is predicted that dryland salinity will affect up to 17 Mha of the Australian landscape by 2050, and therefore, monitoring the health of tree plantings and remnant native vegetation in saline areas is increasingly important. Casuarina glauca Sieber ex Spreng. has considerable salinity tolerance and is commonly planted in areas with a shallow, saline water table. To evaluate the potential of using the nitrogenous composition of xylem sap to assess salinity stress in C. glauca, the responses of trees grown with various soil salinities in a greenhouse were compared with those of trees growing in field plots with different water table depths and groundwater salinities. In the greenhouse, increasing soil salinity led to increased allocation of nitrogen (N) to proline and arginine in both stem and root xylem sap, with coincident decreases in citrulline and asparagine. Although the field plots were ranked as increasingly saline-based on ground water salinity and depth-only the allocation of N to citrulline differed significantly between the field plots. Within each plot, temporal variation in the composition of the xylem sap was related to rainfall, rainfall infiltration and soil salinity. Periods of low rainfall and infiltration and higher soil salinity corresponded with increased allocation of N to proline and arginine in the xylem sap. The allocation of N to citrulline and asparagine increased following rainfall events where rain was calculated to have infiltrated sufficiently to decrease soil salinity. The relationship between nitrogenous composition of the xylem sap of C. glauca and soil salinity indicates that the analysis of xylem sap is an effective method for assessing changes in salinity stress in trees at a particular site over time. However, the composition of the xylem sap proved less useful as a comparative index of salinity stress in trees growing at different sites.
Resumo:
Changes in carbohydrate metabolism of 'Kensington' mango fruit from 2 major production regions in Queensland were measured after conditioning fruit with hot air at 40degreesC for 0, 2, 4, 8 and 16 h or at 22degreesC for 16 h (control) followed by hot-water treatment at either 45degreesC fruit-core temperature for 30 min or 47degreesC fruit-core temperature held for 15 min. Advancing physiological maturity of 'Kensington' mango fruit was correlated with increased starch concentration within the mesocarp. An alpha-amylase inhibitor was present in unripe 'Kensington' mesocarp. alpha-Amylase activity was promoted by conditioning fruit at 40degreesC for 8 h, and this enhanced enzyme activity persisted until the fruit were ripe. Consequently, starch degradation was accelerated and the concentration of total soluble solids was higher in fruit conditioned at 40degreesC for 8 h than in fruit left at the lower temperature of 22degreesC for 16 h or not conditioned. Immediately on removal of fruit from hot-water treatment, activities of alpha-amylase and phosphorylase were inhibited. This inhibition was correlated with higher starch concentration and starch layer and starch spot injuries in these fruit. A positive correlation was also found between increased sucrose concentration and greater starch loss in 40degreesC conditioned 'Kensington' fruit. It is proposed that increased sugar concentration in the mesocarp increased the level of fruit heat tolerance.
Resumo:
Recently, two fresh water species, 'Candidatus Brocadia anammoxidans' and 'Candidatus Kuenenia stuttgartiensis', and one marine species, 'Candidatus Scalindua sorokinii', of planctomycete anammox bacteria have been identified. 'Candidatus Scalindua sorokinii' was discovered in the Black Sea, and contributed substantially to the loss of fixed nitrogen. All three species contain a unique organelle-the anammoxosome-in their cytoplasm. The anammoxosome contains the hydrazine/hydroxylamine oxidoreductase enzyme, and is thus the site of anammox catabolism. The anammoxosome is surrounded by a very dense membrane composed almost exclusively of linearly concatenated cyclobutane-containing lipids. These so-called 'ladderanes' are connected to the glycerol moiety via both ester and ether bonds. In natural and man-made ecosystems, anammox bacteria can cooperate with aerobic ammonium-oxidising bacteria, which protect them from harmful oxygen, and provide the necessary nitrite. The cooperation of these two groups of ammonium-oxidising bacteria is the microbial basis for a sustainable one reactor system, CANON (completely autotrophic nitrogen-removal over nitrite) to remove ammonia from high strength wastewater.