994 resultados para Ward, William George, 1812-1882.
Resumo:
Mode of access: Internet.
Resumo:
"A list of authorities": p. 627-29.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
I. Robespierre. Carlyle. Byron. Macaulay. Emerson. --II. Vauvenargues. Turgot. Condorcet. Joseph de Maistre. --III. On popular culture. The death of Mr. Mill. Mr. Mill's Autobiography. The life of George Eliot. On Pattison's Memoirs. Harriet Martineau. W.R. Greg; a sketch. France in the eighteenth century. The expansion of England. Auguste Comte.
Resumo:
New surveys were completed and data from the field sheets were kindly furnished by the U. S. Coast and Geodetic Survey to the Woods Hole Oceanographic Institution for use in dredging and coring operations. This field work, first reported in 1936, was continued from time to time until 1941 as new soundings became available. Rock dredging and coring has been carried out in every major canyon on the slope from Corsair Canyon at the tip of Georges Bank to Norfolk Canyon off the entrance to the Chesapeake. Numerous cores have also been taken from the areas in between; and while the whole slope from Georges to the Chesapeake has not been covered, it is believed that no significant areas have been missed. In the following report the tows and cores will be described by areas from Georges Bank southwards, as the same region was revisited in successive years. The various samples, however, will be referred to by number followed by the year in which they were taken. The material is in storage in the Woods Hole Oceanographic Institution and in the Museum of Comparative Zoology at Harvard University.
Resumo:
A criterion is suggested for discrimination between ferromanganese oxide minerals, deposited after the introduction of manganese and associated elements in sea water solution at submarine vulcanism, and minerals which are slowly formed from dilute solution, largely of continental origin. The simlultaneous injection of thorium into the ocean by submarine vulcanism is indicated, and its differentiation from continental thorium introduced into the ocean by runoff is discussed.
Resumo:
Ferromanganese micronodules have been found on Georges Bank, off the U.S. northeast coast, distributed throughout the surficial sediments within an area about 125 km long and at least 12 km wide. These coarse, sand-sized concretions have precipitated from metal-rich interstitial waters and contain many of the textural and structural features common to other neritic nodules. Most of the nodules have accreted around detrital grains, and X-ray powder diffraction analyses indicate the presence of geothite and vernadite ( delta -MnO sub(2)) in the ferromanganese layers. Chemical analyses of the micronodules, when compared with similar data on deep-sea manganese nodules, reveal lower Mn/Fe ratios, significantly higher concentrations of V and As, comparable values of Mo, and an order of magnitude less of Co, Ni, Ce and most other, metals.
Resumo:
A compilation of chemical analyses of Pacific Ocean nodules using an x-ray fluorescence technique. The equipment used was a General Electric XRD-5 with a tungsten tube. Lithium fluoride was used as the diffraction element in assaying for all elements above calcium in the atomic table and EDDT was used in conjunction with a helium path for all elements with an atomic number less than calcium. Flow counters were used in conjunction with a pulse height analyzer to eliminate x-ray lines of different but integral orders in gathering count data. The stability of the equipment was found to be excellent by the author. The equipment was calibrated by the use of standard ores made from pure oxide forms of the elements in the nodules and carefully mixed in proportion to the amounts of these elements generally found in the manganese nodules. Chemically analyzed standards of the nodules themselves were also used. As a final check, a known amount of the element in question was added to selected samples of the nodules and careful counts were taken on these samples before and after the addition of the extra amount of the element. The method involved the determination and subsequent use of absorption and activation factors for the lines of the various elements. All the absorption and activation factors were carefully determined using the standard ores. The chemically analyzed samples of the nodules by these methods yielded an accuracy to at least three significant figures.
Resumo:
A near-bottom geological and geophysical survey was conducted at the western intersection of the Siqueiros Transform Fault and the East Pacific Rise. Transform-fault shear appears to distort the east flank of the rise crest in an area north of the fracture zone. In ward-facing scarps trend 335° and do not parallel the regional axis of spreading. Small-scale scarps reveal a hummocky bathymetry. The center of spreading is not a central peak but rather a 20-40 m deep, 1 km wide valley superimposed upon an 8 km wide ridge-crest horst. Small-scale topography indicates widespread volcanic flows within the valley. Two 0.75 km wide blocks flank the central valley. Fault scarps are more dominant on the western flank. Their alignment shifts from directions intermediate to parallel to the regional axis of spreading (355°). A median ridge within the fracture zone has a fault-block topography similar to that of the East Pacific Rise to the north. Dominant eastward-facing scarps trending 335° are on the west flank. A central depression, 1 km wide and 30 m deep, separates the dominantly fault-block regime of the west from the smoother topography of the east flank. This ridge originated by uplift due to faulting as well as by volcanism. Detailed mapping was concentrated in a perched basin (Dante's Hole) at the intersection of the rise crest and the fracture zone. Structural features suggest that Dante's Hole is an area subject to extreme shear and tensional drag resulting from transition between non-rigid and rigid crustal behavior. Normal E-W crustal spreading is probably taking place well within the northern confines of the basin. Possible residual spreading of this isolated rise crest coupled with shear drag within the transform fault could explain the structural isolation of Dante's Hole from the remainder of the Siqueiros Transform Fault.