944 resultados para Visual perception tests
Resumo:
Purpose: To develop a questionnaire that subjectively assesses near visual function in patients with 'accommodating' intraocular lenses (IOLs). Methods: A literature search of existing vision-related quality-of-life instruments identified all questions relating to near visual tasks. Questions were combined if repeated in multiple instruments. Further relevant questions were added and item interpretation confirmed through multidisciplinary consultation and focus groups. A preliminary 19-item questionnaire was presented to 22 subjects at their 4-week visit post first eye phacoemulsification with 'accommodative' IOL implantation, and again 6 and 12 weeks post-operatively. Rasch Analysis, Frequency of Endorsement, and tests of normality (skew and kurtosis) were used to reduce the instrument. Cronbach's alpha and test-retest reliability (intraclass correlation coefficient, ICC) were determined for the final questionnaire. Construct validity was obtained by Pearson's product moment correlation (PPMC) of questionnaire scores to reading acuity (RA) and to Critical Print Size (CPS) reading speed. Criterion validity was obtained by receiver operating characteristic (ROC) curve analysis and dimensionality of the questionnaire was assessed by factor analysis. Results: Rasch Analysis eliminated nine items due to poor fit statistics. The final items have good separation (2.55), internal consistency (Cronbach's α = 0.97) and test-retest reliability (ICC = 0.66). PPMC of questionnaire scores with RA was 0.33, and with CPS reading speed was 0.08. Area under the ROC curve was 0.88 and Factor Analysis revealed one principal factor. Conclusion: The pilot data indicates the questionnaire to be internally consistent, reliable and a valid instrument that could be useful for assessing near visual function in patients with 'accommodating' IOLS. The questionnaire will now be expanded to include other types of presbyopic correction. © 2007 British Contact Lens Association.
Resumo:
Both animal and human studies suggest that the efficiency with which we are able to grasp objects is attributable to a repertoire of motor signals derived directly from vision. This is in general agreement with the long-held belief that the automatic generation of motor signals by the perception of objects is based on the actions they afford. In this study, we used magnetoencephalography (MEG) to determine the spatial distribution and temporal dynamics of brain regions activated during passive viewing of object and non-object targets that varied in the extent to which they afforded a grasping action. Synthetic Aperture Magnetometry (SAM) was used to localize task-related oscillatory power changes within specific frequency bands, and the time course of activity within given regions-of-interest was determined by calculating time-frequency plots using a Morlet wavelet transform. Both single subject and group-averaged data on the spatial distribution of brain activity are presented. We show that: (i) significant reductions in 10-25 Hz activity within extrastriate cortex, occipito-temporal cortex, sensori-motor cortex and cerebellum were evident with passive viewing of both objects and non-objects; and (ii) reductions in oscillatory activity within the posterior part of the superior parietal cortex (area Ba7) were only evident with the perception of objects. Assuming that focal reductions in low-frequency oscillations (< 30 Hz) reflect areas of heightened neural activity, we conclude that: (i) activity within a network of brain areas, including the sensori-motor cortex, is not critically dependent on stimulus type and may reflect general changes in visual attention; and (ii) the posterior part of the superior parietal cortex, area Ba7, is activated preferentially by objects and may play a role in computations related to grasping. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Autism is a pervasive developmental disorder and Asperger’s syndrome is part of the spectrum of autism disorders. This thesis aims to: • Review and investigate current theories concerning visual function in individuals with Asperger’s syndrome and high functioning autism spectrum disorder and to translate the findings into clinical practice by developing a specific protocol for the eye examination of individuals of this population. • Investigate whether those with Asperger’s syndrome are more likely to suffer from Meares-Irlen syndrome and/or dyslexia. • Assess the integrity of the M-cell pathway in Asperger’s syndrome using perimetric tests available in optometric practice to investigate and also to describe the nature of any defects. • Evaluate eye movement strategies in Asperger’s whilst viewing both text and images. Also to evaluate the most appropriate methodology for investigating eye movements; namely optical digital eye tracking and electrophysiology methodologies. Findings of the investigations include • Eye examinations for individuals with Asperger’s syndrome should contain the same testing methods as for the general population, with special consideration for clear communication. • There is a depression of M-pathway visual field sensitivity in 57% (8/14) of people with Asperger’s syndrome, supporting previous evidence for an M-cell deficit in some individuals. • There is a raised prevalence of dyslexia in Asperger’s syndrome (26% of a sample of 31) but not necessarily of Meares-Irlen syndrome. • Gaze strategies are abnormal in Asperger’s syndrome, for both reading and viewing of images. With increased saccadic movement and decreased viewing of faces in comparison to background detail.
Resumo:
The authors studied the influence of canonical orientation on visual search for object orientation. Displays consisted of pictures of animals whose axis of elongation was either vertical or tilted in their canonical orientation. Target orientation could be either congruent or incongruent with the object's canonical orientation. In Experiment 1, vertical canonical targets were detected faster when they were tilted (incongruent) than when they were vertical (congruent). This search asymmetry was reversed for tilted canonical targets. The effect of canonical orientation was partially preserved when objects were high-pass filtered, but it was eliminated when they were low-pass filtered, rendering them as unfamiliar shapes (Experiment 2). The effect of canonical orientation was also eliminated by inverting the objects (Experiment 3) and in a patient with visual agnosia (Experiment 4). These results indicate that orientation search with familiar objects can be modulated by canonical orientation, and they indicate a top-down influence on orientation processing. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
Resumo:
In this thesis the relationship between visual attention, affordance and action was investigated using a combination of neuroimaging and behavioural studies. Neuronal activity and movement construction were assessed when individuals passively viewed or produced action towards stimuli varying in their affordance and/or attentional attributes. The main findings were: (i) the passive perception of both object and abstract visual patterns was associated with decreased alpha and/or beta activity in sensori-motor cortex, occipito-temporal cortex and cerebellum. These are brain regions associated with the planning and production of visually guided action; (ii) for object patterns, decreased alpha and beta activity was also observed in regions of superior parietal and premotor cortex. These regions contain neurons argued to be essential for matching hand kinematics with manipulate objects; and (iii) in both control participants and a deafferented individual, studies of planned and unplanned pointing manoeuvres revealed that the attentional bias of a stimulus was critical for fast, efficient action production whereas the affordance bias was critical in determining end-point accuracy. Taken together, these findings demonstrate that affordance is not a necessary prerequisite for the potential of motor codes. Rather, affordance enables the construction of motor responses that reflect object functionality and/or manipulability. They further demonstrate that visual attention is associated with the potentiation of motor codes. Indeed, directed visual attention would appear critical for speeded responses. These findings provide new insights into the roles of directed visual attention and affordance upon action.
Functional neuroimaging and behavioural studies on global form processing in the human visual system
Resumo:
Magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and behavioural experiments were used to investigate the neural processes underlying global form perception in human vision. Behavioural studies using Glass patterns examined sensitivity for detecting radial, rotational and horizontal structure. Neuroimaging experiments using either Glass patterns or arrays of Gabor patches determined the spatio-temporal neural responseto global form. MEG data were analysed using synthetic aperture magnetometry (SAM) to spatially map event-related cortical oscillatory power changes: the temporal sequencing of activity within a discrete cortical area was determined using a Morlet wavelet transform. A case study was conducted to determine the effects of strbismic amblyopia on global form processing: all other observers were normally-sighted. The main findings from normally-sighted observers were: 1) sensitivity to horizontal structure was less than for radial or rotational structure; 2) the neural response to global structure was a reduction in cortical oscillatory power (10-30 Hz) within a network of extrastriate areas, including V4 and V3a; 3) the extend of reduced cortical power was least for horizontal patters; 4) V1 was not identified as a region of peak activity with either MEG or fMRI. The main findings with the strabismic amblyope were: 1) sensitivity for detection of radial, rotational, and horizontal structure was reduced when viewed with the amblyopic- relative to the fellow- eye; 2) cortical power changes within V4 to the presentation of rotational Glass patterns were less when viewed with the amblyopic- compared with the fellow- eye. The main conclusions are: 1) a network of extrastriate cortical areas are involved in the analysis of global form, with the most prominent change in neural activity being a reduction in oscillatory power within the 10-30 Hz band; 2) in strabismic amblyopia, the neuronal assembly associated with form perception in extrastriate cortex may be dysfunctional, the nature of this dysfunction may be a change in the normal temporal pattern of neuronal discharges; 3) MEG, fMRI and behavioural measures support the notion that different neural processes underlie the perception of horizontal as opposed to radial or rotational structure.
Resumo:
This thesis is an exploration of the oscillatory changes occurring in the visual cortex as measured by a functional imaging technique known as Synthetic Aperture Magnetometry (SAM), and how these compare to the BOLD response, across a number of different experimental paradigms. In chapter one the anatomy and physiology of the visual pathways and cortex are outlined, introducing the reader to structures and terms used throughout the thesis whilst chapter two introduces both the technology and analysis techniques required to record MEG and fMRI and also outlines the theory behind SAM. In chapter three the temporal frequency tuning of both striate and extrastriate cortex is investigated, showing fundamental differences in both tuning characteristics and oscillatory power changes between the two areas. Chapter four introduces the concept of implied-motion and investigates the role of area V5 / MT in the perception of such stimuli and shows, for the first time, the temporal evolution of the response in this area. Similarly a close link is shown between the early evoked potential, produced by the stimulus, and previous BOLD responses. Chapter five investigates the modulation of cortical oscillations to both shifts in attention and varying stimulus contrast. It shows that there are both induced and evoked modulation changes with attention, consistent with areas previously known to show BOLD responses. Chapter six involves a direct comparison of cortical oscillatory changes with those of the BOLD response in relation to the parametric variation of a motion coherence stimulus. It is shown that various cortical areas show a linear BOLD response to motion coherence and, for the first time, that both induced oscillatory and evoked activity also vary linearly in areas coincidental with the BOLD response. The final chapter is a summary of the main conclusions and suggests further work.
Resumo:
Over the last decade, television screens and display monitors have increased in size considerably, but has this improved our televisual experience? Our working hypothesis was that the audiences adopt a general strategy that “bigger is better.” However, as our visual perceptions do not tap directly into basic retinal image properties such as retinal image size (C. A. Burbeck, 1987), we wondered whether object size itself might be an important factor. To test this, we needed a task that would tap into the subjective experiences of participants watching a movie on different-sized displays with the same retinal subtense. Our participants used a line bisection task to self-report their level of “presence” (i.e., their involvement with the movie) at several target locations that were probed in a 45-min section of the movie “The Good, The Bad, and The Ugly.” Measures of pupil dilation and reaction time to the probes were also obtained. In Experiment 1, we found that subjective ratings of presence increased with physical screen size, supporting our hypothesis. Face scenes also produced higher presence scores than landscape scenes for both screen sizes. In Experiment 2, reaction time and pupil dilation results showed the same trends as the presence ratings and pupil dilation correlated with presence ratings, providing some validation of the method. Overall, the results suggest that real-time measures of subjective presence might be a valuable tool for measuring audience experience for different types of (i) display and (ii) audiovisual material.
Resumo:
This review describes the oculo-visual problems likely to be encountered in Parkinson's disease (PD) with special reference to three questions: (1) are there visual symptoms characteristic of the prodromal phase of PD, (2) is PD dementia associated with specific visual changes, and (3) can visual symptoms help in the differential diagnosis of the parkinsonian syndromes, viz. PD, progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD)? Oculo-visual dysfunction in PD can involve visual acuity, dynamic contrast sensitivity, colour discrimination, pupil reactivity, eye movement, motion perception, and visual processing speeds. In addition, disturbance of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations may be present. Prodromal features of PD may include autonomic system dysfunction potentially affecting pupil reactivity, abnormal colour vision, abnormal stereopsis associated with postural instability, defects in smooth pursuit eye movements, and deficits in visuo-motor adaptation, especially when accompanied by idiopathic rapid eye movement (REM) sleep behaviour disorder. PD dementia is associated with the exacerbation of many oculo-visual problems but those involving eye movements, visuo-spatial function, and visual hallucinations are most characteristic. Useful diagnostic features in differentiating the parkinsonian symptoms are the presence of visual hallucinations, visuo-spatial problems, and variation in saccadic eye movement dysfunction.
Resumo:
Motion is an important aspect of face perception that has been largely neglected to date. Many of the established findings are based on studies that use static facial images, which do not reflect the unique temporal dynamics available from seeing a moving face. In the present thesis a set of naturalistic dynamic facial emotional expressions was purposely created and used to investigate the neural structures involved in the perception of dynamic facial expressions of emotion, with both functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG). Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend the distributed neural system for face perception (Haxby et al.,2000). Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as inferior occipital gyri and superior temporal sulci, along with coupling between superior temporal sulci and amygdalae, as well as with inferior frontal gyri. MEG and Synthetic Aperture Magnetometry (SAM) were used to examine the spatiotemporal profile of neurophysiological activity within this dynamic face perception network. SAM analysis revealed a number of regions showing differential activation to dynamic versus static faces in the distributed face network, characterised by decreases in cortical oscillatory power in the beta band, which were spatially coincident with those regions that were previously identified with fMRI. These findings support the presence of a distributed network of cortical regions that mediate the perception of dynamic facial expressions, with the fMRI data providing information on the spatial co-ordinates paralleled by the MEG data, which indicate the temporal dynamics within this network. This integrated multimodal approach offers both excellent spatial and temporal resolution, thereby providing an opportunity to explore dynamic brain activity and connectivity during face processing.
Resumo:
Visual search impairment can occur following stroke. The utility of optimal spectral filters on visual search in stroke patients has not been considered to date. The present study measured the effect of optimal spectral filters on visual search response time and accuracy, using a task requiring serial processing. A stroke and control cohort undertook the task three times: (i) using an optimally selected spectral filter; (ii) the subjects were randomly assigned to two groups with group 1 using an optimal filter for two weeks, whereas group 2 used a grey filter for two weeks; (iii) the groups were crossed over with group 1 using a grey filter for a further two weeks and group 2 given an optimal filter, before undertaking the task for the final time. Initial use of an optimal spectral filter improved visual search response time but not error scores in the stroke cohort. Prolonged use of neither an optimal nor a grey filter improved response time or reduced error scores. In fact, response times increased with the filter, regardless of its type, for stroke and control subjects; this outcome may be due to contrast reduction or a reflection of task design, given that significant practice effects were noted. © 2013 a Pion publication.
Resumo:
PURPOSE: Previous investigations have demonstrated a relative vascular autoregulatory inefficiency of the inferior compared to the superior retina in healthy subjects breathing increased CO2. The purpose of this study was to determine whether the superior and inferior visual field sensitivities of healthy eyes are similarly affected during mild hypercapnia. DESIGN: Experimental study. METHODS: Visual field analysis (Humphrey Field Analyser; SITA standard 24-2 program) was carried out on one randomly selected eye of 22 subjects (mean age, 27.7 ± 5 years) during normal room air breathing and isoxic hypercapnia. The Student paired t-tests were used to compare the visual field indices mean deviation (MD) and pattern standard deviation (PSD) for each breathing condition. A secondary, sectoral analysis of mean pointwise sensitivity was performed for each condition. In each case a P value of <.01 was considered statistically significant (Bonferroni corrected). RESULTS: Visual field MD was -0.23 ± 0.95dB during room air breathing and -0.49 ± 1.04dB during hypercapnia (P = .034). Sectoral pointwise mean sensitivity deteriorated by 0.46dB (P = .006) in the upper visual hemifield during hypercapnia, whereas no significant difference was observed for the lower hemifield (P = .331). CONCLUSIONS: The upper visual hemifield exhibited a significantly greater degree of deterioration in pointwise visual field mean sensitivity compared to the lower hemifield during hypercapnic conditions. This suggests that the upper visual hemifield and hence inferior retina is more susceptible to insult during hypercapnia than the superior retina in healthy individuals. A regional susceptibility of inferior retinal function to altered vascular or metabolic effects may account for the earlier and more frequent inferior nerve fibre damage associated with glaucomatous optic neuropathy. © 2003 by Elsevier Science Inc. All rights reserved.
Resumo:
In this report we summarize the state-of-the-art of speech emotion recognition from the signal processing point of view. On the bases of multi-corporal experiments with machine-learning classifiers, the observation is made that existing approaches for supervised machine learning lead to database dependent classifiers which can not be applied for multi-language speech emotion recognition without additional training because they discriminate the emotion classes following the used training language. As there are experimental results showing that Humans can perform language independent categorisation, we made a parallel between machine recognition and the cognitive process and tried to discover the sources of these divergent results. The analysis suggests that the main difference is that the speech perception allows extraction of language independent features although language dependent features are incorporated in all levels of the speech signal and play as a strong discriminative function in human perception. Based on several results in related domains, we have suggested that in addition, the cognitive process of emotion-recognition is based on categorisation, assisted by some hierarchical structure of the emotional categories, existing in the cognitive space of all humans. We propose a strategy for developing language independent machine emotion recognition, related to the identification of language independent speech features and the use of additional information from visual (expression) features.
Resumo:
We compared judgements of the simultaneity or asynchrony of visual stimuli in individuals with autism spectrum disorders (ASD) and typically-developing controls using Magnetoencephalography (MEG). Two vertical bars were presented simultaneously or non-simultaneously with two different stimulus onset delays. Participants with ASD distinguished significantly better between real simultaneity (0 ms delay between two stimuli) and apparent simultaneity (17 ms delay between two stimuli) than controls. In line with the increased sensitivity, event-related MEG activity showed increased differential responses for simultaneity versus apparent simultaneity. The strongest evoked potentials, observed over occipital cortices at about 130 ms, were correlated with performance differences in the ASD group only. Superior access to early visual brain processes in ASD might underlie increased resolution of visual events in perception. © 2012 Springer Science+Business Media New York.
Resumo:
Background - Abnormalities in visual processes have been observed in schizophrenia patients and have been associated with alteration of the lateral occipital complex and visual cortex. However, the relationship of these abnormalities with clinical symptomatology is largely unknown. Methods - We investigated the brain activity associated with object perception in schizophrenia. Pictures of common objects were presented to 26 healthy participants (age = 36.9; 11 females) and 20 schizophrenia patients (age = 39.9; 8 females) in an fMRI study. Results - In the healthy sample the presentation of pictures yielded significant activation (pFWE (cluster) < 0.001) of the bilateral fusiform gyrus, bilateral lingual gyrus, and bilateral middle occipital gyrus. In patients, the bilateral fusiform gyrus and bilateral lingual gyrus were significantly activated (pFWE (cluster) < 0.001), but not so the middle occipital gyrus. However, significant bilateral activation of the middle occipital gyrus (pFWE (cluster) < 0.05) was revealed when illness duration was controlled for. Depression was significantly associated with increased activation, and anxiety with decreased activation, of the right middle occipital gyrus and several other brain areas in the patient group. No association with positive or negative symptoms was revealed. Conclusions - Illness duration accounts for the weak activation of the middle occipital gyrus in patients during picture presentation. Affective symptoms, but not positive or negative symptoms, influence the activation of the right middle occipital gyrus and other brain areas.