983 resultados para Visual attention
Cognitive disorganisation in schizotypy is associated with deterioration in visual backward masking.
Resumo:
To understand the causes of schizophrenia, a search for stable markers (endophenotypes) is ongoing. In previous years, we have shown that the shine-through visual backward masking paradigm meets the most important characteristics of an endophenotype. Here, we tested masking performance differences between healthy students with low and high schizotypy scores as determined by the self-report O-Life questionnaire assessing schizotypy along three dimensions, i.e. positive schizotypy (unusual experiences), cognitive disorganisation, and negative schizotypy (introvertive anhedonia). Forty participants performed the shine-through backward masking task and a classical cognitive test, the Wisconsin Card Sorting Task (WCST). We found that visual backward masking was impaired for students scoring high as compared to low on the cognitive disorganisation dimension, whereas the positive and negative schizotypy dimensions showed no link to masking performance. We also found group differences for students scoring high and low on the cognitive disorganisation factor for the WCST. These findings indicate that the shine-through paradigm is sensitive to differences in schizotypy which are closely linked with the pathological expression in schizophrenia.
Resumo:
Background and Aims: The international EEsAI study group iscurrently developing the first a ctivity index specific forEosinophilic Esophagitis (EoE). None of the existing dysphagiaquestionnaires take into account the consistency of theingested food t hat considerably impacts the symptompresentation. Goal: To d evelop and evaluate an E oE-specificquestionnaire assessing dysphagia caused by foods of differentconsistencies.Methods: B ased on patient interviews and chart reviews, a nexpert panel ( EEsAI study g roup) identified internationallystandardizedfood prototypes t ypically a ssociated with EoErelateddysphagia. Food consistencies were c orrelated withEoE-related d ysphagia, t aking into account p otential f oodavoidance and f ood processing. This V isual D ysphagiaQuestionnaire (VDQ) was piloted in 20 patients and is currentlyevaluated in a cohort of 150 adult EoE patients.Results: T he following 8 food c onsistency prototypes w ereidentified: soft foods (pudding, jelly), grits, toast bread, Frenchfries, dry rice, ground meat, raw fibrous f oods (eg. apple,carrot), s olid m eat. Dysphagia was r anked o n a 4-point Likertscale (0=no difficulties; 3= severe difficulties, food will not pass).First analysis demonstrated that severity of dysphagia is relatedto the eosinophil load and presence of esophageal strictures.Conclusions: T he VDQ i s the first EoE-specific tool f orassessing dysphagia caused by i nternationally-standardizedfoods of different consistencies. This instrument also addressesfood avoidance behaviour and food processing habits. This toolperformed well in a p ilot study a nd is currently evaluated in acohort of 150 adult EoE patients.
Resumo:
Introduction: Schizophrenia is associated with multiple neuropsychological dysfunctions, such as disturbances of attention, memory, perceptual functioning, concept formation and executive processes. These cognitive functions are reported to depend on the integrity of the prefrontal and thalamo-prefrontal circuits. Multiple lines of evidence suggest that schizophrenia is related to abnormalities in neural circuitry and impaired structural connectivity. Here, we report a preliminary case-control study that showed a correlation between thalamo-frontal connections and several cognitive functions known to be impaired in schizophrenia. Materials and Methods: We investigated 9 schizophrenic patients (DSM IV criteria, Diagnostic Interview for Genetic Studies) and 9 age and sex matched control subjects. We obtained from each volunteer a DT-MRI dataset (3 T, _ _ 1,000 s/mm2), and a high resolution anatomic T1. The thalamo- frontal tracts are simulated with DTI tractography on these dataset, a method allowing inference of the main neural fiber tracks from Diffusion MRI data. In order to see an eventual correlation with the thalamo-frontal connections, every subject performs a battery of neuropsychological tests including computerized tests of attention (sustained attention, selective attention and reaction time), working memory tests (Plane test and the working memory sub-tests of the Wechsler Adult Intelligence Scale), a executive functioning task (Tower of Hanoï) and a test of visual binding abilities. Results: In a pilot case-control study (patients: n _ 9; controls: n _ 9), we showed that this methodology is appropriate and giving results in the excepted range. Considering the relation of the connectivity density and the neuropsychological data, a correlation between the number of thalamo- frontal fibers and the performance in the Tower of Hanoï was observed in the patients (Pearson correlation, r _ 0.76, p _ 0.05) but not in control subjects. In the most difficult item of the test, the least number of fibers corresponds to the worst performance of the test (fig. 2, number of supplementary movements of the elements necessary to realize the right configuration). It's interesting to note here that in an independent study, we showed that schizophrenia patients (n _ 32) perform in the most difficult item of the Tower of Hanoï (Mann-Whitney, p _ 0.005) significantly worse than control subjects (n _ 29). This has been observed in several others neuropsychological studies. Discussion: This pilot study of schizophrenia patients shows a correlation between the number of thalam-frontal fibers and the performance in the Tower of Hanoï, which is a planning and goal oriented actions task known to be associated with frontal dysfonction. This observation is consistent with the proposed impaired connectivity in schizophrenia. We aim to pursue the study with a larger sample in order to determine if other neuropsychological tests may be associated with the connectivity density.
Resumo:
Alpha-band activity (8-13 Hz) is not only suppressed by sensory stimulation and movements, but also modulated by attention, working memory and mental tasks, and could be sensitive to higher motor control functions. The aim of the present study was to examine alpha oscillatory activity during the preparation of simple left or right finger movements, contrasting the external and internal mode of action selection. Three preparation conditions were examined using a precueing paradigm with S1 as the preparatory and S2 as the imperative cue: Full, laterality instructed by S1; Free, laterality freely selected and None, laterality instructed by S2. Time-frequency (TF) analysis was performed in the alpha frequency range during the S1-S2 interval, and alpha motor-related amplitude asymmetries (MRAA) were also calculated. The significant MRAA during the Full and Free conditions indicated effective external and internal motor response preparation. In the absence of specific motor preparation (None), a posterior alpha event-related desynchronization (ERD) dominated, reflecting the main engagement of attentional resources. In Full and Free motor preparation, posterior alpha ERD was accompanied by a midparietal alpha event-related synchronization (ERS), suggesting a concomitant inhibition of task-irrelevant visual activity. In both Full and Free motor preparation, analysis of alpha power according to MRAA amplitude revealed two types of functional activation patterns: (1) a motor alpha pattern, with predominantly midparietal alpha ERS and large MRAA corresponding to lateralized motor activation/visual inhibition and (2) an attentional alpha pattern, with dominating right posterior alpha ERD and small MRAA reflecting visuospatial attention. The present results suggest that alpha oscillatory patterns do not resolve the selection mode of action, but rather distinguish separate functional strategies of motor preparation.
Resumo:
Contribution of visual and nonvisual mechanisms to spatial behavior of rats in the Morris water maze was studied with a computerized infrared tracking system, which switched off the room lights when the subject entered the inner circular area of the pool with an escape platform. Naive rats trained under light-dark conditions (L-D) found the escape platform more slowly than rats trained in permanent light (L). After group members were swapped, the L-pretrained rats found under L-D conditions the same target faster and eventually approached latencies attained during L navigation. Performance of L-D-trained rats deteriorated in permanent darkness (D) but improved with continued D training. Thus L-D navigation improves gradually by procedural learning (extrapolation of the start-target azimuth into the zero-visibility zone) but remains impaired by lack of immediate visual feedback rather than by absence of the snapshot memory of the target view.
Resumo:
Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.
Resumo:
Using head-mounted eye tracker material, we assessed spatial recognition abilities (e.g., reaction to object permutation, removal or replacement with a new object) in participants with intellectual disabilities. The "Intellectual Disabilities (ID)" group (n=40) obtained a score totalling a 93.7% success rate, whereas the "Normal Control" group (n=40) scored 55.6% and took longer to fix their attention on the displaced object. The participants with an intellectual disability thus had a more accurate perception of spatial changes than controls. Interestingly, the ID participants were more reactive to object displacement than to removal of the object. In the specific test of novelty detection, however, the scores were similar, the two groups approaching 100% detection. Analysis of the strategies expressed by the ID group revealed that they engaged in more systematic object checking and were more sensitive than the control group to changes in the structure of the environment. Indeed, during the familiarisation phase, the "ID" group explored the collection of objects more slowly, and fixed their gaze for a longer time upon a significantly lower number of fixation points during visual sweeping.
Resumo:
Schizotypy refers to a set of personality traits thought to reflect the subclinical expression of the signs and symptoms of schizophrenia. Here, we review the cognitive and brain functional profile associated with high questionnaire scores in schizotypy. We discuss empirical evidence from the domains of perception, attention, memory, imagery and representation, language, and motor control. Perceptual deficits occur early and across various modalities. Whilst the neural mechanisms underlying visual impairments may be linked to magnocellular dysfunction, further effects may be seen downstream in higher cognitive functions. Cognitive deficits are observed in inhibitory control, selective and sustained attention, incidental learning and memory. In concordance with the cognitive nature of many of the aberrations of schizotypy, higher levels of schizotypy are associated with enhanced vividness and better performance on tasks of mental rotation. Language deficits seem most pronounced in higher-level processes. Finally, higher levels of schizotypy are associated with reduced performance on oculomotor tasks, resembling the impairments seen in schizophrenia. Some of these deficits are accompanied by reduced brain activation, akin to the pattern of hypoactivations in schizophrenia spectrum individuals. We conclude that schizotypy is a construct with apparent phenomenological overlap with schizophrenia and stable inter-individual differences that covary with performance on a wide range of perceptual, cognitive and motor tasks known to be impaired in schizophrenia. The importance of these findings lies not only in providing a fine-grained neurocognitive characterisation of a personality constellation known to be associated with real-life impairments, but also in generating hypotheses concerning the aetiology of schizophrenia.
Resumo:
Autism spectrum disorder (ASD) symptoms frequently occur in subjects with attention deficit/hyperactivity disorder (ADHD). While there is evidence that both ADHD and ASD have differential structural correlates, no study to date has investigated these structural correlates within a framework that robustly accounts for the phenotypic overlap between the two disorders. The presence of ASD symptoms was measured by the parent-reported Children's Social and Behavioural Questionnaire (CSBQ) in ADHD subjects (n = 180), their unaffected siblings (n = 118) and healthy controls (n = 146). ADHD symptoms were assessed by a structured interview (K-SADS-PL) and the Conners' ADHD questionnaires. Whole brain T1-weighted MPRAGE images were acquired and the structural MRI correlates of ASD symptom scores were analysed by modelling ASD symptom scores against white matter (WM) and grey matter (GM) volumes using mixed effects models which controlled for ADHD symptom levels. ASD symptoms were significantly elevated in ADHD subjects relative to both controls and unaffected siblings. ASD scores were predicted by the interaction between WM and GM volumes. Increasing ASD score was associated with greater GM volume. Equivocal results from previous structural studies in ADHD and ASD may be due to the fact that comorbidity has not been taken into account in studies to date. The current findings stress the need to account for issues of ASD comorbidity in ADHD.
Resumo:
The kitten's auditory cortex (including the first and second auditory fields AI and AII) is known to send transient axons to either ipsi- or contralateral visual areas 17 and 18. By the end of the first postnatal month the transitory axons, but not their neurons of origin, are eliminated. Here we investigated where these neurons project after the elimination of the transitory axon. Eighteen kittens received early (postnatal day (pd) 2 - 5) injections of long lasting retrograde fluorescent traces in visual areas 17 and 18 and late (pd 35 - 64) injections of other retrograde fluorescent tracers in either hemisphere, mostly in areas known to receive projections from AI and AII in the adult cat. The middle ectosylvian gyrus was analysed for double-labelled neurons in the region corresponding approximately to AI and AII. Late injections in the contralateral (to the analysed AI, AII) hemisphere including all of the known auditory areas, as well as some visual and 'association' areas, did not relabel neurons which had had transient projections to either ipsi- or contralateral visual areas 17 - 18. Thus, AI and AII neurons after eliminating their transient juvenile projections to visual areas 17 and 18 do not project to the other hemisphere. In contrast, relabelling was obtained with late injections in several locations in the ipsilateral hemisphere; it was expressed as per cent of the population labelled by the early injections. Few neurons (0 - 2.5%) were relabelled by large injections in the caudal part of the posterior ectosylvian gyrus and the adjacent posterior suprasylvian sulcus (areas DP, P, VP). Multiple injections in the middle ectosylvian gyrus relabelled a considerably larger percentage of neurons (13%). Single small injections in the middle ectosylvian gyrus (areas AI, AII), the caudal part of the anterior ectosylvian gyrus and the rostral part of the posterior ectosylvian gyrus relabelled 3.1 - 7.0% of neurons. These neurons were generally near (<2.0 mm) the outer border of the late injection sites. Neurons with transient projections to ipsi- or contralateral visual areas 17 and 18 were relabelled in similar proportions by late injections at any given location. Thus, AI or AII neurons which send a transitory axon to ipsi- or contralateral visual areas 17 and 18 are most likely to form short permanent cortical connections. In that respect, they are similar to medial area 17 neurons that form transitory callosal axons and short permanent axons to ipsilateral visual areas 17 and 18.