970 resultados para Visible lasers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The titanium species in four kinds of titanium-containing MFI zeolites have been studied by ultraviolet (UV)-Raman and ultraviolet visible (UV-Vis) absorption spectroscopies and by the epoxidation of propylene with diluted H2O2 solution (30%). UV-Raman spectroscopy is proved to be a suitable means to estimate qualitatively the framework titanium in TS-l zeolites. Based on the comparison of the relative intensity ratio I-1125/I-380 of UV-Raman spectra, the TS-1(conv.) sample synthesized hydrothermally by the conventional procedure shows the highest amount of framework titanium. UV-Vis spectroscopy reveals that besides minor anatase. titanium species are mainly tetrahydrally coordinated into the framework for TS-l(conv.) or the Ti-ZSM-5 sample prepared by gas-solid reaction between deboronated B-ZSM-5 and TiCl4 vapor at elevated temperatures. For the TS-1(org.) and TS-1(inorg.) samples synthesized hydrothermally using tetrapropylammonium bromide (TPABr) as template and tetrabutylorthotitanite (TBOT) and TiCl3 as titanium source, respectively, the presence of mononuclear and isolated TiOx species which are proposed to bond to the zeolite extraframework is observed. In addition to the framework titanium species, these isolated TiOx species are assumed to be also active for propylene epoxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following article appeared in Torres, V., Beruete, M., Del Villar, I., & Sánchez, P. (2016). Indium tin oxide refractometer in the visible and near infrared via lossy mode and surface plasmon resonances with Kretschmann configuration. Applied Physics Letters, 108(4), doi:10.1063/1.4941077, and may be found at http://dx.doi.org/10.1063/1.4941077.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new characterization of protein structure based on the natural tetrahedral geometry of the β carbon and a new geometric measure of structural similarity, called visible volume. In our model, the side-chains are replaced by an ideal tetrahedron, the orientation of which is fixed with respect to the backbone and corresponds to the preferred rotamer directions. Visible volume is a measure of the non-occluded empty space surrounding each residue position after the side-chains have been removed. It is a robust, parameter-free, locally-computed quantity that accounts for many of the spatial constraints that are of relevance to the corresponding position in the native structure. When computing visible volume, we ignore the nature of both the residue observed at each site and the ones surrounding it. We focus instead on the space that, together, these residues could occupy. By doing so, we are able to quantify a new kind of invariance beyond the apparent variations in protein families, namely, the conservation of the physical space available at structurally equivalent positions for side-chain packing. Corresponding positions in native structures are likely to be of interest in protein structure prediction, protein design, and homology modeling. Visible volume is related to the degree of exposure of a residue position and to the actual rotamers in native proteins. In this article, we discuss the properties of this new measure, namely, its robustness with respect to both crystallographic uncertainties and naturally occurring variations in atomic coordinates, and the remarkable fact that it is essentially independent of the choice of the parameters used in calculating it. We also show how visible volume can be used to align protein structures, to identify structurally equivalent positions that are conserved in a family of proteins, and to single out positions in a protein that are likely to be of biological interest. These properties qualify visible volume as a powerful tool in a variety of applications, from the detailed analysis of protein structure to homology modeling, protein structural alignment, and the definition of better scoring functions for threading purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiquantum barrier (MQB), proposed by Iga et al in 1986, has been shown by several researchers to be an effective structure for improving the operating characteristics of laser diodes. These improvements include a reduction in the laser threshold current and increased characteristic temperatures. The operation of the MQB has been described as providing an increased barrier to electron overflow by reflecting high energy electrons trying to escape from the active region of the laser.This is achieved in a manner analogous to a Bragg reflector in optics. This thesis presents an investigation of the effectiveness of the MQB as an electron reflector. Numerical models have been developed for calculating the electron reflection due to MQB. Novel optical and electrical characterisation techniques have been used to try to measure an increase in barrier height due to the MQB in AlGaInP.It has been shown that the inclusion of MQB structures in bulk double heterostructure visible laser diodes can halve the threshold current above room temperature and the characteristic temperature of these lasers can be increased by up to 20K.These improvements are shown to occur in visible laser diodes even with the inclusion of theoretically ineffective MQB structures, hence the observed improvement in the characteristics of the laser diodes described above cannot be uniquely attributed to an increased barrier height due to enhance electron reflection. It is proposed here that the MQB improves the performance of laser diodes by proventing the diffusion of zinc into the active region of the laser. It is also proposed that the trapped zinc in the MQB region of the laser diode locally increases the p-type doping bringing the quasi-Fermi level for holes closer to the valence band edge thus increasing the barrier to electron overflow in the conduction band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum dashes are elongated quantum dots. Polarized edge-photovoltage and spontaneous emission spectroscopy are used to study the anisotropy of optical properties in 1.5μm InGaAsP and AlGaInAs-based quantum dash lasers. Strain, which causes TM-polarized transitions to be suppressed at the band edge, coupled with carrier confinement and dash shape leads to an enhancement of the optical properties for light polarized along the dash long axis, in excellent agreement with theoretical results. An analysis of the integrated facet and spontaneous emission rate with total current and temperature reveals that, in both undoped and p-doped InGaAsP-based quantum dash lasers at room temperature, the threshold current and its temperature dependence remain dominated by Auger recombination. We also identify two processes which can limit the output power and propose that the effects of the dopant in p-doped InGaAsP-based lasers dominate at low temperature but decrease with increasing temperature. A high threshold current density in undoped AlGaInAs-based quantum dash laser samples studied, which degrade rapidly at low temperature, is not due to intrinsic carrier recombination processes. 1.3μm GaAs-based quantum dots lasers have been widely studied, but there remains issues as to the nature of the electronic structure. Polarized edge-photovoltage spectroscopy is used to investigate the energy distribution and nature of the energy states in InAs/GaAs quantum dot material. A non-negligible TM-polarized transition, which is often neglected in calculations and analyses, is measured close to the main TE-polarized ground state transition. Theory is in very good agreement with the experimental results and indicates that the measured low-energy TM-polarized transition is due to the strong spatial overlap between the ground state electron and the light-hole component of a low-lying excited hole state. Further calculations suggest that the TM-polarized transition reduces at the band edge as the quantum dot aspect ratio decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal photonic crystals have potential light manipulation applications including; fabrication of efficient lasers and LEDs, improved optical sensors and interconnects, and improving photovoltaic efficiencies. One road-block of colloidal selfassembly is their inherent defects; however, they can be manufactured cost effectively into large area films compared to micro-fabrication methods. This thesis investigates production of ‘large-area’ colloidal photonic crystals by sonication, under oil co-crystallization and controlled evaporation, with a view to reducing cracking and other defects. A simple monotonic Stöber particle synthesis method was developed producing silica particles in the range of 80 to 600nm in a single step. An analytical method assesses the quality of surface particle ordering in a semiquantitative manner was developed. Using fast Fourier transform (FFT) spot intensities, a grey scale symmetry area method, has been used to quantify the FFT profiles. Adding ultrasonic vibrations during film formation demonstrated large areas could be assembled rapidly, however film ordering suffered as a result. Under oil cocrystallisation results in the particles being bound together during film formation. While having potential to form large areas, it requires further refinement to be established as a production technique. Achieving high quality photonic crystals bonded with low concentrations (<5%) of polymeric adhesives while maintaining refractive index contrast, proved difficult and degraded the film’s uniformity. A controlled evaporation method, using a mixed solvent suspension, represents the most promising method to produce high quality films over large areas, 75mm x 25mm. During this mixed solvent approach, the film is kept in the wet state longer, thus reducing cracks developing during the drying stage. These films are crack-free up to a critical thickness, and show very large domains, which are visible in low magnification SEM images as Moiré fringe patterns. Higher magnification reveals separation between alternate fringe patterns are domain boundaries between individual crystalline growth fronts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of two mutually coupled identical single-mode semi-conductor lasers are theoretically investigated. For small separation and large coupling between the lasers, symmetry-broken one-colour states are shown to be stable. In this case the light output of the lasers have significantly different intensities whilst at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable two-colour states, where both single-mode lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. For low coupling but possibly large separation, the frequency of the relaxation oscillations of the freerunning lasers defines the dynamics. Chaotic and quasi-periodic states are identified and shown to be stable. For weak coupling undamped relaxation oscillations dominate where each laser is locked to three or more odd number of colours spaced by the relaxation oscillation frequency. It is shown that the instabilities that lead to these states are directly connected to the two colour mechanism where the change in the number of optical colours due to a change in the plane of oscillation. At initial coupling, in-phase and anti-phase one colour states are shown to emerge from “on” uncoupled lasers using a perturbation method. Similarly symmetry-broken one-colour states come from considering one free-running laser initially “on” and the other laser initially “off”. The mechanism that leads to a bi-stability between in-phase and anti-phase one-colour states is understood. Due to an equivariant phase space symmetry of being able to exchange the identical lasers, a symmetric and symmetry-broken variant of all states mentioned above exists and is shown to be stable. Using a five dimensional model we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-colour, symmetric and symmetry-broken two-colour, symmetric and symmetry-broken undamped relaxation oscillations, symmetric and symmetry-broken quasi-periodic, and symmetric and symmetry-broken chaotic states. As symmetry-broken states always exist in pairs, they naturally give rise to bi-stability. Several of these states show multistabilities between symmetric and symmetry-broken variants and among states. Three memory elements on the basis of bi-stabilities in one and two colour states for two coupled single-mode lasers are proposed. The switching performance of selected designs of optical memory elements is studied numerically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thin-film InGaAs/GaAs edge-emitting single-quantum-well laser has been integrated with a tapered multimode SU-8 waveguide onto an Si substrate. The SU-8 waveguide is passively aligned to the laser using mask-based photolithography, mimicking electrical interconnection in Si complementary metal-oxide semiconductor, and overlaps one facet of the thin-film laser for coupling power from the laser to the waveguide. Injected threshold current densities of 260A/cm(2) are measured with the reduced reflectivity of the embedded laser facet while improving single mode coupling efficiency, which is theoretically simulated to be 77%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collection :Europto series, 6