998 resultados para Vertical Vegetation
Resumo:
The vertical distribution of decapod larvae off the northwest Portuguese coast was analysed in relation to associated environmental conditions from sampling during a 69 h period around a current meter mooring located on the shelf, approximately 21 km off the coast. Plankton samples were collected every 2 h at the surface with a neuston net and through the water column with a Longhurst Hardy Plankton Recorder (Pro-LHPR), allowing a very detailed resolution of larval vertical distribution. Environmental data (temperature, salinity, and chlorophyll a) were obtained every hour. To investigate the horizontal distribution of decapod larvae in relation to the coast, a plankton-sampling grid was carried out before the 69 h fixed station. Larvae of shelf decapod species were widely distributed over the shelf, while those of inshore species were found much closer to the coast. Decapod larvae (zoeae and megalopae) showed clear diel vertical migrations, only appearing in the upper 20 m at night, a migration that did not appear to be affected by physical conditions in the water column. Larval densities were highly variable, 0.01 to 215 ind. m super(-3) for zoeae and 0 to 93 ind. m super(-3) for megalopae, the zoeae being generally more abundant. The results indicated that during the day larvae accumulate very close to the bottom. The diel vertical migration behaviour is discussed as one of the contributing mechanisms for larval retention over the shelf, even with offshore transport conditions promoted by coastal upwelling, and is hence of major relevance for the recruitment success of decapod species that inhabit inshore and shelf zones of coastal upwelling systems.
Resumo:
Sandy shores are known to be extreme ecosystems where the vegetation has evolved many morphological and physiological adaptations for its survival. With the aim of identify possible relationships between the vegetation´s functional diversity with abiotic factors and its corresponding quantification, we collected data on the abundance and richness of the sandy coast vegetation complex in Grande, Anclitas and Caguamas keys. Its flora is largely characterized by the dominance of hemicryptophytes and chamaephytes plants with nanophyllous leaves and displaying dispersal syndromes such as zoochory and anemochory. However, the functional groups´ richness, in the present study, varies from one key to another. Functional diversity is similar between the wet and dry seasons, and its spatial variation is influenced by the interplay of the set of abiotic factors herein studied.
Resumo:
A sampling and analytical system has been developed for shipboard measurements of high-resolution vertical profiles of the marine trace gas dimethylsulfide (DMS). The system consists of a tube attached to a CTD with a peristaltic pump on deck that delivers seawater to a membrane equilibrator and atmospheric pressure chemical ionization mass spectrometer (Eq-APCIMS). This allows profiling DMS concentrations to a depth of 50 m, with a depth resolution of 1.3-2 m and a detection limit of nearly 0.1 nmol L-1. The seawater is also plumbed to allow parallel operation of additional continuous instruments, and simultaneous collection of discrete samples for complementary analyses. A valve alternates delivery of seawater from the vertical profiler and the ship�s underway intake, thereby providing high-resolution measurements in both the vertical and horizontal dimensions. Tests conducted on various cruises in the Mediterranean Sea, Atlantic, Indian, and Pacific Oceans show good agreement between the Eq-APCIMS measurements and purge and trap gas chromatography with flame photometric detection (GC-FPD) and demonstrate that the delivery of seawater from the underway pump did not significantly affect endogenous DMS concentrations. Combination of the continuous flow DMS analysis with high-frequency hydrographic, optical, biological and meteorological measurements will greatly improve the spatial/temporal resolution of seagoing measurements and improve our understanding of DMS cycling.
Resumo:
Concentrations of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) are highly variable in time and space. What is driving the variability in DMS(P), and can those variability be explained by physical processes and changes in the biological community? During the Southern Ocean Gas Exchange Experiment (SO GasEx) in the austral fall of 2008, two 3He/SF6 labeled patches were created in the surface water. SF6 and DMS were surveyed continuously in a Lagrangian framework, while direct measurements of air-sea exchange further constrained the gas budgets. Turbulent diffusivity at the base of the mixed layer was estimated from SF6 profiles and used to calculate the vertical fluxes of DMS and nutrients. Increasing mixed layer nutrient concentrations due to mixing were associated with a shift in the phytoplankton community structure, which in turned likely affected the sulfur dynamics on timescales of days. DMS concentration as well as air-sea DMS flux appeared to be decoupled from the DMSP concentration, possibly due to grazing and bacterial DMS production. Contrary to expectations, in an environment with high winds and modest productivity, physical processes (air-sea exchange, photochemistry, vertical mixing) only accounted for a small fraction of DMS loss from the surface water. Among the DMS sinks, inferred biological consumption most likely dominated during SO GasEx.
Resumo:
An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements.
Resumo:
We present here vertical fluxes of methanol, acetaldehyde, and acetone measured directly with eddy covariance (EC) during March to July 2012 near the southwest coast of the UK. The performance of the proton-transfer reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Concentrations and fluxes of these compounds vary significantly with time of day and wind direction. Higher values of acetaldehyde and acetone are usually observed in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol concentration and flux do not demonstrate clear diel variability, suggesting sources in addition to plants. We estimate air–sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1�) concentration of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction outpaces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime concentrations of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long distance transport, respectively.
Resumo:
The distribution of cirripede cyprids in relation to associated oceanographic conditions was obtained from a grid survey and intensive vertical sampling at a fixed station located 21 km off the northwest Portuguese coast in May 2002. Analysis of cyprid length composition allowed separation of 3 species groups. Chthamalus montagui, Pollicipes pollicipes and Balanus perforatus were largely restricted to the neuston layer and showed only low-amplitude vertical migration. Most C. stellatus cyprids only appeared in the upper 20 m at night, a migration which did not appear to be affected by physical conditions in the water column, but some differences in the vertical migration pattern between days were probably related to varying light penetration. C. montagui is the most abundant adult species found along the Portuguese coast, but C. stellatus cyprids, at densities of up to 8.7 ind. m–3, were the most common sampled in all depth strata at the fixed station. Cyprid horizontal distribution was mainly restricted to an offshore band along the inner shelf, where highest densities were 11 to 15 ind. m–3. This distribution pattern was considered to result from upwelling-favourable wind conditions, creating fronts along the shelf in which the cyprids become concentrated. Cyprid vertical migration, in association with current vertical shear and onshore movement of fronts during upwelling-relaxation periods, may be the mechanisms returning cyprids to the coast to settle. The regularity of these events in the region falls within the period of cyprid viability.
Resumo:
Les formations a genévrier thurifère des Alpes françcaises du sud, présentent un intérêt biogeographique et historique de première importance. Les auteurs étudient les structures de végétation que le genevrier organise dans les étages supraméditerranéen et montagnards.
Resumo:
We present descriptions of a new order (Ranunculo cortusifolii-Geranietalia reuteri and of a new alliance (Stachyo lusitanicae-Cheirolophion sempervirentis) for the herbaceous fringe communities of Macaronesia and of the southwestern Iberian Peninsula, respectively. A new alliance, the Polygalo mediterraneae-Bromion erecti (mesophilous post-cultural grasslands), was introduced for the Peninsular Italy. We further validate and typify the Armerietalia rumelicae (perennial grasslands supported by nutrient-poor on siliceous bedrocks at altitudes characterized by the submediterranean climate of central-southern Balkan Peninsula), the Securigero-Dasypyrion villosae (lawn and fallow-land tall-grass annual vegetation of Italy), and the Cirsio vallis-demoni-Nardion (acidophilous grasslands on siliceous substrates of the Southern Italy). Nomenclatural issues (validity, legitimacy, synonymy, formal corrections) have been discussed and clarified for the following names: Brachypodio-Brometalia, Bromo pannonici-Festucion csikhegyensis, Corynephoro-Plantaginion radicatae, Heleochloion, Hieracio-Plantaginion radicatae, Nardetea strictae, Nardetalia strictae, Nardo-Callunetea, Nardo-Galion saxatilis, Oligo-Bromion, Paspalo-Heleochloetalia, Plantagini-Corynephorion and Scorzoneret alia villosae.
Resumo:
Fourty-two high-rank syntaxa and seven associations of the thallophyte system of syntaxa are either described as new or validated in this paper. Among those, there are the following nine classes: Aspicilietea candidae, Caulerpetea racemosae, Desmococcetea olivacei, Entophysalidetea deustae, Gloeocapsetea sanguineae, Mesotaenietea berggrenii, Naviculetea gregariae, Porpidietea zeoroidis, Roccelletea phycopsis. Eleven orders and ten alliances as well as three associations are described or validated: the Aspicilietalia verruculosae (incl. Aspicilion mashiginensis and Teloschistion contortuplicati), the Caulerpetalia racemosae (incl. Caulerpion racemosae), the Desmococcetalia olivacei (incl. Desmococcion olivacei), the Dirinetalia massiliensis, the Fucetalia vesiculosi (incl. Ascophyllion nodosi), the Gloeocapsetalia sanguineae, the Lecideetalia confluescentis (incl. Lecideion confluescentis), the Mesotaenietalia berggrenii (incl. Mesotaenion berggrenii, Mesotaenietum berggrenii and Chloromonadetum nivalis), the Naviculetalia gregariae (incl. Oscillatorion limosae and Oscillatorietum limosae), the Porpidietalia zeoroidis (incl. Porpidion zeoroidis), and the Roccelletalia fuciformis (incl. Paralecanographion grumulosae). Further, five orders, seven alliances and four associations, classified in known classes, were described as well. These include: the Bacidinetalia phacodis, the Agonimion octosporae and the Dendrographetalia decolorantis (all in the Arthonio radiatae-Lecidelletea elaeochromae), the Staurothelion solventis (in the Aspicilietea lacustris), the Pediastro duplicis-Scenedesmion quadricaudae and the Pediastro duplicis-Scenedesmetum quadricaudae (both in the Asterionelletea formosae), the Peccanion coralloidis and the Peltuletalia euplocae (both in the Collematetea cristati), the Laminarion hyperboreae, the Saccorhizo polyschidi-Laminarietum and the Alario esculenti-Himanthalietum elongatae (all in the Cystoseiretea crinitae), the Delesserietalia sanguinei, the Delesserion sanguinei and the Delesserietum sanguineae (all in the Lithophylletea soluti), as well as the the Rinodino confragosae-Rusavskietalia elegantis and the Rhizocarpo geographici-Rusavskion elegantis (both in the Rhizocarpetea geographici).
Resumo:
Macroalgal epiphytes within seagrass meadows make a significant contribution to total primary production by assimilating water column N and transferring organic N to sediments. Assimilation of NO3 – requires nitrate reductase (NR, EC 1.6.6.1); NR activity represents the capacity for NO3 – assimilation. An optimised in vitro assay for determining NR activity in algal extracts was applied to a wide range of macroalgae and detected NR activity in all 22 species tested with activity 2 to 290 nmolNO3 – min–1 g–1 frozen thallus. With liquid-N2 freezing immediately after sample collection, this method was practical for estimating NR activity in field samples. Vertical distribution of NR activity in macroalgal epiphytes was compared in contrasting Posidonia sinuosa and Amphibolis antarctica seagrass meadows. Epiphytes on P. sinuosa had higher mass-specific NR activity than those on A. antarctica. In P. sinuosa canopies, NR activity increased with distance from the sediment surface and was negatively correlated with [NH4 +] in the water but uncorrelated with [NO3 –]. This supported the hypothesis that NH4 + released from the sediment suppresses NR in epiphytic algae. In contrast, the vertical variation in NR activity in macroalgae on A. antarctica was not statistically significant although there was a weak correlation with [NO3 –], which increased with distance from the sediment. Estimated capacities for NO3 – assimilation in macroalgae epiphytic on seagrasses during summer (24 and 46 mmolN m–2 d–1 for P. sinuosa and A. antarctica, respectively) were more than twice the estimated N assimilation rates in similar seagrasses. When the estimates were based on annual average epiphyte loads for seagrass meadows in other locations, they were comparable to those of seagrasses. We conclude that epiphytic algae represent a potentially important sink for water-column nitrate within seagrass meadows.