933 resultados para Vegetation fragments
Resumo:
This thesis examines the effects of flooding on coastal and salt marsh vegetation. I conducted a field experiment in Bellocchio Lagoon to test the effects of different inundation periods (Level 1 = 0.468 or 11.23 hours; Level 2 = 0.351 or 8.42 hours; Level 3 = 0.263 or 6.312 hours; Level 4 = 0.155 or 3.72 hours; Level 5 = 0.082 or 1.963 hours; Level 6 = 0.04 or 0.96 hours) on the growth responses and survival of the salt marsh grass Spartina maritima in summer 2011 and 2012. S. maritima grew better at intermediate inundation times (0,351 hours; 0,263 hours, 0,115 hours; 0,082 hours), while growth and survival were reduced at greater inundation periods (0,468 hours). The differences between the 2011 and 2012 experiment were mainly related to differences in the initial number of shoots (1 and 5, respectively in 2011 and 2012). In the 2011 experiment a significant lower number of plants was present in the levels 1 and 6, the rhizomes reached the max pick in level 4, weights was major in level 4, spike length reached the pick in level 3 while leaf length in level 2. In the 2012 experiment the plants in level 6 all died, the rhizomes were more present in level 3, weights was major in level 3, spike length reached the pick in level 3, as well as leaf length. I also conducted a laboratory experiment which was designed to test the effects of 5 different inundation periods (0 control, 8, 24, 48, 96 hours) on the survival of three coastal vegetation species Agrostis stolonifera, Trifolium repens and Hippopae rhamnoides in summer 2012. The same laboratory experiment was repeated in the Netherlands. In Italy, H. rhamnoides showed a great survival in the controls, a variable performance in the other treatments and a clear decrease in treatment 4. Conversely T. repens and A. stolonifera only survive in the control. In the Netherlands experiment there was a greater variability responses for each species, still at the end of the experiment survival was significantly smaller in treatment 4 (96 h of seawater inundation) for all the three species. The results suggest that increased flooding can affect negatively the survival of both saltmarsh and coastal plants, limiting root system extension and leaf growth. Flooding effect could lead to further decline and fragmentation of the saltmarshes and coastal vegetation, thereby reducing recovery (and thus resilience) of these systems once disturbed. These effects could be amplified by interactions with other co-occurring human impacts in these systems, and it is therefore necessary to identify management options that increase the resilience of these systems.
Resumo:
Vegetation-cycles are of general interest for many applications. Be it for harvest-predictions, global monitoring of climate-change or as input to atmospheric models.rnrnCommon Vegetation Indices use the fact that for vegetation the difference between Red and Near Infrared reflection is higher than in any other material on Earth’s surface. This gives a very high degree of confidence for vegetation-detection.rnrnThe spectrally resolving data from the GOME and SCIAMACHY satellite-instrumentsrnprovide the chance to analyse finer spectral features throughout the Red and Near Infrared spectrum using Differential Optical Absorption Spectroscopy (DOAS). Although originally developed to retrieve information on atmospheric trace gases, we use it to gain information on vegetation. Another advantage is that this method automatically corrects for changes in the atmosphere. This renders the vegetation-information easily comparable over long time-spans.rnThe first results using previously available reference spectra were encouraging, but also indicated substantial limitations of the available reflectance spectra of vegetation. This was the motivation to create new and more suitable vegetation reference spectra within this thesis.rnThe set of reference spectra obtained is unique in its extent and also with respect to its spectral resolution and the quality of the spectral calibration. For the first time, this allowed a comprehensive investigation of the high-frequency spectral structures of vegetation reflectance and of their dependence on the viewing geometry.rnrnThe results indicate that high-frequency reflectance from vegetation is very complex and highly variable. While this is an interesting finding in itself, it also complicates the application of the obtained reference spectra to the spectral analysis of satellite observations.rnrnThe new set of vegetation reference spectra created in this thesis opens new perspectives for research. Besides refined satellite analyses, these spectra might also be used for applications on other platforms such as aircraft. First promising studies have been presented in this thesis, but the full potential for the remote sensing of vegetation from satellite (or aircraft) could bernfurther exploited in future studies.
Resumo:
During a Christmas party, two male guests started fighting. The perpetrator was allegedly pushed onto a glass table by the victim or fell into the table together with that man so that the glass top broke and caused a cut wound on the perpetrator's back. According to his statement he then threw a fragment of the broken glass table in the direction of the other man hitting him accidentally in a way so that the subclavian artery was severed and he died from exsanguination. Tests on the breaking characteristics of the glass table, the flying behaviour and the kinetics of thrown glass fragments conducted on various models supported the conclusion that the fatal injury on the victim's neck could not have been caused by a thrown glass fragment. It was much more likely that a stab with a blade-shaped glass fragment was the cause of the fatal injuries.