848 resultados para Uteroplacental Insufficiency
Resumo:
Despite much attention, the function of oligosaccharide chains of glycoproteins remains largely unknown. Our understanding of oligosaccharide function in vivo has been limited to the use of reagents and targeted mutations that eliminate entire oligosaccharide chains. However, most, if not all biological functions for oligosaccharides have been attributed to specific terminal sequences on these oligosaccharides, yet there have been few studies to examine the consequences of modifying terminal oligosaccharide structures in vivo. To address this issue, mice were created bearing a targeted mutation in $\beta$1,4-galactosyltransferase, an enzyme responsible for elaboration of many of the proposed biologically-active carbohydrate epitopes. Most galactosyltransferase-null mice died within the first few weeks after birth and were characterized by stunted growth, thin skin, sparse hair, and dehydration. In addition, the adrenal cortices were poorly stratified and spermatogenesis was delayed. The few surviving adults had puffy skin (myxedema), difficulty delivering pups at birth (dystocia), and failed to lactate (agalactosis). All of these defects are consistant with endocrine insufficiency, which was confirmed by markedly decreased levels of serum thyroxine. The anterior pituitary gland appeared functionally delayed in newborn mutant mice, since the constituent cells were quiescent and nonsecretory, unlike that of control littermates. However, the anterior pituitary acquired a normal secretory phenotype during neonatal development, although it remained abnormally small and its glycoprotein hormones were devoid of $\beta$1,4-galactosyl residues. These results support in vitro studies suggesting that incomplete glycosylation of pituitary hormones leads to the creation of hormone antagonists that down regulate subsequent endocrine function producing polyglandular endocrine insufficiency. More surprisingly, the fact that some mice survive this neonatal period indicates the presence of a previously unrecognized compensatory pathway for glycoprotein hormone glycosylation and/or action.^ In addition to its well-studied biosynthetic function in the Golgi complex, a GalTase isoform is also expressed on the sperm surface where it functions as a gamete receptor during fertilization by binding to its oligosaccharide ligand on the egg coat glycoprotein, ZP3. Aggregation of GalTase by multivalent ZP3 oligosaccharides activates a G-protein cascade leading to the acrosome reaction. Although GalTase-null males are fertile, the mutant sperm bind less ZP3 than wild-type sperm, and are unable to undergo the acrosome reaction in response to either zona pellucida glycoproteins or to anti-GalTase anti-serum, as do wild-type sperm. However, mutant and wild-type sperm undergo the acrosome reaction normally in response to calcium ionophore which bypasses the requirement for ZP3 binding. Interestingly, the phenotype of the GalTase-null sperm is reciprocal to that of sperm that overexpress surface GalTAse and which bind more ZP3 leading to precocious acrosome reactions. These results confirm that GalTase functions as at least one of the sperm receptors for ZP3, and that GalTase participates in the ZP3-induced signal transduction pathway during zona pellucida-induced acrosome reactions. ^
Resumo:
Placental formation and genomic imprinting are two important features of embryonic development in placental mammals. Genetic studies have demonstrated that imprinted genes play a prominent role in regulating placental formation. In marsupials, mice and humans, the paternally derived X chromosome is preferentially inactivated in the placental tissues of female embryos. This special form of genomic imprinting may have evolved under the same selective forces as autosomal imprinted genes. This chromosomal imprinting phenomenon predicts the existence of maternally expressed X-linked genes that regulate placental development.^ In this study, an X-linked homeobox gene, designated Esx1 has been isolated. During embryogenesis, Esx1 was expressed in a subset of placental tissues and regulates formation of the chorioallantoic placenta. Esx1 acted as an imprinted gene. Heterozygous female mice that inherit an Esx1-null allele from their father developed normally. However, heterozygous females that inherit the Esx1 mutation from their mother were born 20% smaller than normal and had an identical phenotype to hemizygous mutant males and homozygous mutant females. Surprisingly, although Esx1 mutant embryos were initially comparable in size to wild-type controls at 13.5 days post coitum (E13.5) their placentas were significantly larger (51% heavier than controls). Defects in the morphogenesis of the labyrinthine layer were observed as early as E11.5. Subsequently, vascularization abnormalities developed at the maternal-fetal interface, causing fetal growth retardation. These results identify Esx1 as the first essential X-chromosome-imprinted regulator of placental development that influences fetal growth and may have important implications in understanding human placental insufficiency syndromes such as intrauterine growth retardation (IUGR). ^
Resumo:
AIMS Cystatin C is a well established marker of kidney function. There is evidence that cystatin C concentrations are also associated with mortality. The present analysis prospectively evaluated the associations of cystatin C with all-cause and cardiovascular (CV) mortality in a well-characterized cohort of persons undergoing angiography, but without overt renal insufficiency. METHODS Cystatin C was available in 2998 persons (mean age: 62.7 ± 10.5 years; 30.3% women). Of those 2346 suffered from coronary artery disease (CAD) and 652 (controls) did not. Creatinine (mean ± SD: 83.1 ± 47.8 vs. 74.1 ± 24.7 μmol/L, p = 0.036) but not Cystatin C (mean ± SD: 1.02 ± 0.44 vs. 0.92 ± 0.26 mg/L, p = 0.065) was significantly higher in patients with CAD. After a median follow-up of 9.9 years, in total 898 (30%) deaths occurred, 554 (18.5%) due to CV disease and 326 (10.9%) due to non-CV causes. Multivariable-adjusted Cox analysis (adjusting for eGFR and established cardiovascular risk factors, lipid lowering therapy, angiographic coronary artery disease, and C-reactive protein) revealed that patients in the highest cystatin C quartile were at an increased risk for all-cause (hazard ratio (HR) 1.93, 95% CI 1.50-2.48) and CV mortality (HR 2.05 95% CI 1.48-2.84) compared to those in the lowest quartile. The addition of cystatin C to a model consisting of established cardiovascular risk factors increased the area under the receiver-operating characteristic curve for CV and all-cause mortality, but the difference was statistically not significant. However, reclassification analysis revealed significant improvement by addition of cystatin C for CV and all-cause mortality (p < 0.001), respectively. CONCLUSION The concentration of cystatin C is strongly associated with long-term all-cause and cardiovascular mortality in patients referred to coronary angiography, irrespective of creatinine-based renal function.
Resumo:
Venous malformations (VMs) are the most common vascular developmental anomalies (birth defects) . These defects are caused by developmental arrest of the venous system during various stages of embryogenesis. VMs remain a difficult diagnostic and therapeutic challenge due to the wide range of clinical presentations, unpredictable clinical course, erratic response to the treatment with high recurrence/persistence rates, high morbidity following non-specific conventional treatment, and confusing terminology. The Consensus Panel reviewed the recent scientific literature up to the year 2013 to update a previous IUP Consensus (2009) on the same subject. ISSVA Classification with special merits for the differentiation between the congenital vascular malformation (CVM) and vascular tumors was reinforced with an additional review on syndrome-based classification. A "modified" Hamburg classification was adopted to emphasize the importance of extratruncular vs. truncular sub-types of VMs. This incorporated the embryological origin, morphological differences, unique characteristics, prognosis and recurrence rates of VMs based on this embryological classification. The definition and classification of VMs were strengthened with the addition of angiographic data that determines the hemodynamic characteristics, the anatomical pattern of draining veins and hence the risk of complication following sclerotherapy. The hemolymphatic malformations, a combined condition incorporating LMs and other CVMs, were illustrated as a separate topic to differentiate from isolated VMs and to rectify the existing confusion with name-based eponyms such as Klippel-Trenaunay syndrome. Contemporary concepts on VMs were updated with new data including genetic findings linked to the etiology of CVMs and chronic cerebrospinal venous insufficiency. Besides, newly established information on coagulopathy including the role of D-Dimer was thoroughly reviewed to provide guidelines on investigations and anticoagulation therapy in the management of VMs. Congenital vascular bone syndrome resulting in angio-osteo-hyper/hypotrophy and (lateral) marginal vein was separately reviewed. Background data on arterio-venous malformations was included to differentiate this anomaly from syndrome-based VMs. For the treatment, a new section on laser therapy and also a practical guideline for follow up assessment were added to strengthen the management principle of the multidisciplinary approach. All other therapeutic modalities were thoroughly updated to accommodate a changing concept through the years.
Resumo:
BACKGROUND Vitamin D and the components of humoral immunity play important roles in human health. Older people have lower 25-hydroxyvitamin D (25(OH)D) serum levels than younger adults. We aimed to determine the levels of 25(OH)D serum concentrations in healthy senior citizens and to study their relationship to the levels of components of humoral immunity. METHODS A total of 1,470 healthy Swiss men and women, 60 years or older, were recruited for this study. A total of 179 subjects dropped out of the study because of elevated serum concentrations of C-reactive protein. Fasting blood sera were analyzed for 25(OH)D with the high-performance liquid chromatography (HPLC) and for parathyroid hormone (PTH), immunoglobulins and complement C4 and C3 concentrations with immunoassays. The percentage of participants in each of the four 25(OH)D deficiency groups--severely deficient (<10 ng/ml), deficient (10 to 20), insufficient (21 to 29 ng/ml) and normal (>=30 ng/ml)--were statistically compared. The relationship of the major components of the humoral system and age with 25(OH)D levels was also assessed. RESULTS About 66% of the subjects had insufficient levels of 25(OH)D. Normal levels of 25(OH)D were found in 26.1% of the subjects of which 21% were males and 30.5% were females (total study population). Severely deficient levels of 25(OH)D were found in 7.98% of the total study population. Low levels of 25(OH)D were positively associated with IgG2 (P = 0.01) and with C4 (P = 0.02), yet were inversely related to levels of IgG1 and IgA (P < 0.05) and C3 (P = 0.01). Serum levels of total IgA, IgG, IgG2 and IgG4 peaked together with 25(OH)D during late summer. CONCLUSIONS Approximately two-thirds of the healthy, older Swiss population presented with Vitamin D insufficiency. The incremental shift in IgA and C3 levels might not necessarily reflect a deranged humoral immune defense; however, given the high prevalence of vitamin D deficiency, the importance of this condition in humoral immunity will be worth looking at more closely. This study supports the role of vitamin D in the competent immune system.
Resumo:
Etomidate is an imidazole-derived hypnotic agent preferentially used for rapid sequence induction of anaesthesia because of its favourable haemodynamic profile. However, 11β-hydroxylase inhibition causes adrenal insufficiency with potentially fatal consequences in specific populations. We review the arguments against the liberal administration of etomidate in critically ill, and especially septic, patients. This review considered only high-quality and prospective studies with a low risk of bias. Three major effects have been observed with the clinical use of a single dose of etomidate. First, independent of the clinical setting, etomidate causes adrenal dysfunction via 11β-hydroxylase inhibition ranging from 12 to 48 h, making the drug unsuitable for use in elective interventions. Second, in a systematic review with meta-analyses, including 3715 septic patients, the relative risk of death with etomidate was 1.22 (95% confidence interval 1.11 to 1.35). Based on this statistically significant and clinically relevant increase in mortality, a single dose of etomidate has to be avoided in patients with septic shock. Third, in small randomised controlled trials, a single dose of etomidate in trauma patients was associated with an increased incidence of pneumonia (56.7 vs. 25.9% in controls), prolonged intensive care stay (6.3 vs. 1.5 days) and prolonged hospital stay (11.6 vs. 6.4 days). Based on these randomised controlled trials, the use of etomidate should be avoided in unstable trauma patients. Midazolam and ketamine are two valid alternatives with similar intubation and haemodynamic conditions as etomidate but without its adverse effects. Therefore, for safety reasons, etomidate should be avoided in the critical conditions of sepsis and trauma
Resumo:
INTRODUCTION Though developed for thoracic insufficiency syndrome, the spinal growth-stimulating potential and the ease of placement of vertical expandable titanium ribs (VEPTRs) has resulted in their widespread use for early-onset spine deformity. Observation of implant-related ossifications warrants further assessment, since they may be detrimental to the function-preserving non-fusion strategy. PATIENTS AND METHODS Radiographs (obtained pre and post index procedure, and at 4-year follow-up) and the records of 65 VEPTR patients from four paediatric spine centres were analysed. Ossifications were classified as type I (at anchor points), type II (along the central part) or type III (re-ossification after thoracostomy). RESULTS The average age at the index procedure was 6.5 years (min 1, max 13.7). The most prevalent spine problem was congenital scoliosis (37) with rib fusions (34), followed by neuromuscular and syndromic deformities (13 and 8, respectively). Idiopathic and secondary scoliosis (e.g. after thoracotomy) were less frequent (3 and 4, respectively). Forty-two of the 65 (65 %) patients showed ossifications, half of which were around the anchors. Forty-five percent (15/33) without pre-existing rib fusions developed a type II ossification along the implant. Re-ossifications of thoracostomies were less frequent (5/34, 15 %). The occurrence of ossifications was not associated with patient-specific factors. CONCLUSIONS Implant-related ossifications around VEPTR are common. In contrast to harmless bone formation around anchors, ossifications around the telescopic part and the rod section are troublesome in view of their possible negative impact on chest cage compliance and spinal mobility. This potential side effect needs to be considered during implant selection, particularly in patients with originally normal thoracic and spinal anatomy.
Resumo:
PURPOSE To prospectively evaluate the psychometric properties of the Venous Insufficiency Epidemiological and Economic Study (VEINES-QOL/Sym) questionnaire, an instrument to measure disease-specific quality of life and symptoms in elderly patients with deep vein thrombosis (DVT), and to validate a German version of the questionnaire. METHODS In a prospective multicenter cohort study of patients aged ≥ 65 years with acute venous thromboembolism, we used standard psychometric tests and criteria to evaluate the reliability, validity, and responsiveness of the VEINES-QOL/Sym in patients with acute symptomatic DVT. We also performed an exploratory factor analysis. RESULTS Overall, 352 French- and German-speaking patients were enrolled (response rate of 87 %). Both language versions of the VEINES-QOL/Sym showed good acceptability (missing data, floor and ceiling effects), reliability (internal consistency, item-total and inter-item correlations), validity (convergent, discriminant, known-groups differences), and responsiveness to clinical change over time in elderly patients with DVT. The exploratory factor analysis of the VEINES-QOL/Sym suggested three underlying dimensions: limitations in daily activities, DVT-related symptoms, and psychological impact. CONCLUSIONS The VEINES-QOL/Sym questionnaire is a practical, reliable, valid, and responsive instrument to measure quality of life and symptoms in elderly patients with DVT and can be used with confidence in prospective studies to measure outcomes in such patients.
Resumo:
Preeclampsia is a human pregnancy-specific disorder characterized by a placental pro-inflammatory response in combination with an imbalance of angiogenic factors and clinical symptoms, including hypertension and proteinuria. Insufficient uteroplacental oxygenation in preeclampsia due to impaired trophoblast invasion during placentation is believed to be responsible for many of the molecular events leading to the clinical manifestations of this disease. We investigated the use of hypoxic treatment of the dual placental perfusion system as a model for preeclampsia. A modified perfusion technique allowed us to achieve a mean soluble oxygen tension within the intervillous space (IVS) of 5-7% for normoxia and <3% for hypoxia (as a model for preeclampsia). We assayed for the levels of different inflammatory cytokines, oxidative stress markers, as well as other factors, such as endothelin (ET)-1 that are known to be implicated as part of the inflammatory response in preeclampsia. Our results show a significant increase under hypoxia in the levels of different inflammatory cytokines, including IL-6 (P=0.002), IL-8 (P<0.0001), TNF-α (P=0.032) and IFN-γ (P=0.009) at 360 min in maternal venous samples (n=6). There was also a significant increase in ET-1 levels under hypoxia both on the maternal side at 30 min (P=0.003) and fetal side at 360 min (P=0.036) (n=6). Other markers of oxidative stress, including malondialdehyde and 8-iso-protaglandin F2α (P=0.009) also show increased levels. Overall, these findings indicate that exposure of ex vivo dually perfused placental tissue to hypoxia provides a useful model for mimicking the inflammatory response characteristic of preeclampsia. This would therefore provide a powerful tool for studying and further delineating the molecular mechanisms involved in the underlying pathophysiology of preeclampsia.
Resumo:
BACKGROUND Stroke is a major cause of morbidity and mortality during open-heart surgery. Up to 60% of intraoperative cerebral events are emboli induced. This randomized, controlled, multicenter trial is the first human study evaluating the safety and efficacy of a novel aortic cannula producing simultaneous forward flow and backward suction for extracting solid and gaseous emboli from the ascending aorta and aortic arch upon their intraoperative release. METHODS Sixty-six patients (25 females; 68±10 years) undergoing elective aortic valve replacement surgery, with or without coronary artery bypass graft surgery, were randomized to the use of the CardioGard (CardioGard Medical, Or-Yehuda, Israel) Emboli Protection cannula ("treatment") or a standard ("control") aortic cannula. The primary endpoint was the volume of new brain lesions measured by diffusion-weighted magnetic resonance imaging (DW-MRI), performed preoperatively and postoperatively. Device safety was investigated by comparisons of complications rate, namely neurologic events, stroke, renal insufficiency and death. RESULTS Of 66 patients (34 in the treatment group), 51 completed the presurgery and postsurgery MRI (27 in the treatment group). The volume of new brain lesion for the treatment group was (mean±standard error of the mean) 44.00±64.00 versus 126.56±28.74 mm3 in the control group (p=0.004). Of the treatment group, 41% demonstrated new postoperative lesions versus 66% in the control group (p=0.03). The complication rate was comparable in both groups. CONCLUSIONS The CardioGard cannula is safe and efficient in use during open-heart surgery. Efficacy was demonstrated by the removal of a substantial amount of emboli, a significant reduction in the volume of new brain lesions, and the percentage of patients experiencing new brain lesions.
Resumo:
BACKGROUND The Perceval (Sorin Group, Milan, Italy) is a self-anchoring sutureless aortic valve prosthesis. We report the short- to midterm results of combined aortic valve replacement (AVR) with concomitant procedures in elderly patients undergoing operation as part of 3 consecutive prospective multicenter European studies. METHODS From April 2007 to February 2013, 243 patients (mean age, 79.7 ± 5.1 years; female patients, 61%; median EuroSCORE, 9%) underwent AVR with concomitant procedures. The concomitant procedures were coronary artery bypass grafting (CABG) (182 cases), septal myectomy (21 cases), CABG + other procedures (18 cases), and 22 other procedures. Primary and secondary end points included implant feasibility and safety (for mortality and morbidity) and efficacy (New York Heart Association [NYHA] class improvement and hemodynamic results) of the prosthesis at the different follow-up periods. Data were expressed as mean ± standard deviation. Kaplan-Meier analysis was performed for survival analysis. RESULTS Mean aortic cross-clamp and extracorporeal circulation (ECC) times were 50.7 ± 22.8 minutes and 78.9 ± 32.3 minutes, respectively. Thirty-day mortality was 2.1%. Mean postoperative gradient and effective orifice area were 10.1 ± 4.7 mm Hg and 1.5 ± 0.4 cm(2) and 8.9 ± 5.6 mm Hg and 1.6 ± 0.4 cm(2), respectively, at 1 year. There were early explantations, 4 of which resulted from paravalvular leaks. One additional valve explantation resulted from aortic root bleeding, probably caused by excessively extensive decalcification. In the late period, there was 1 mild paravalvular leak and no intravalvular insufficiency. No migration, dislodgement, or degeneration of the valve occurred during follow-up. Median follow-up was 444 days. CONCLUSIONS These trials confirm the safety and efficacy of the Perceval sutureless aortic valve, especially in elderly patients requiring AVR + concomitant procedures. In this patient group, sutureless valves may be advantageous compared to transcatheter valve implantations as concomitant procedures other than percutaneous coronary artery angioplasty are not always possible in the latter.
Resumo:
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic lung disease, resulting in respiratory insufficiency and reduced survival. Pulmonary fibrosis is a result of repeated alveolar epithelial microinjuries, followed by abnormal regeneration and repair processes in the lung. Recently, stem cells and their secretome have been investigated as a novel therapeutic approach in pulmonary fibrosis. We evaluated the potential of induced pluripotent stem cells (iPSC) conditioned media (iPSC-cm) to regenerate and repair the alveolar epithelium in vitro and improve bleomycin induced lung injury in vivo. METHODS IPSC-cm was collected from cultured iPSC derived from human foreskin fibroblasts and its biological effects on alveolar epithelial wound repair was studied in an alveolar wound healing assay in vitro. Furthermore, iPSC-cm was intratracheally instilled 7 days after bleomycin induced injury in the rat lungs and histologically and biochemically assessed 7 days after instillation. RESULTS iPSC-cm increased alveolar epithelial wound repair in vitro compared with medium control. Intratracheal instillation of iPSC-cm in bleomycin-injured lungs reduced the collagen content and improved lung fibrosis in the rat lung in vivo. Profibrotic TGFbeta1 and alpha-smooth muscle actin (alpha-sma) expression were markedly reduced in the iPSC-cm treated group compared with control. Antifibrotic hepatocyte growth factor (HGF) was detected in iPSC-cm in biologically relevant levels, and specific inhibition of HGF in iPSC-cm attenuated the antifibrotic effect of iPSC-cm, indicating a central role of HGF in iPSC-cm. CONCLUSION iPSC-cm increased alveolar epithelial wound repair in vitro and attenuated bleomycin induced fibrosis in vivo, partially due to the presence of HGF and may represent a promising novel, cell free therapeutic option against lung injury and fibrosis.
Resumo:
We report the case of a 79 year old woman presenting with progressive confusion and drowsiness. Renal insufficiency with hyperkalemia as well as hypercalcemia and severe hyperphosphatemia were diagnosed. Renal insufficiency improved with treatment. However, hyperphosphatemia persisted without apparent explanation. We discuss possible causes of hyper- and pseudohyperphosphatemia. Specifically, phosphate analysis may be disturbed by the paraproteins in patients with multiple myeloma, resulting in pseudohyperphosphatemia. We review the standard laboratory phosphate measurement and the mechanisms of interference with paraproteins.
Resumo:
CONTEXT Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. OBJECTIVE To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. PATIENTS 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. METHODS SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). RESULTS Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. CONCLUSIONS Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.
Resumo:
Defects of androgen biosynthesis cause 46,XY disorder of sexual development (DSD). All steroids are produced from cholesterol and the early steps of steroidogenesis are common to mineralocorticoid, glucocorticoid and sex steroid production. Genetic mutations in enzymes and proteins supporting the early biosynthesis pathways cause adrenal insufficiency (AI), DSD and gonadal insufficiency. The classic androgen biosynthesis defects with AI are lipoid CAH, CYP11A1 and HSD3B2 deficiencies. Deficiency of CYP17A1 rarely causes AI, and HSD17B3 or SRD5A2 deficiencies only cause 46,XY DSD and gonadal insufficiency. All androgen biosynthesis depends on 17,20 lyase activity of CYP17A1 which is supported by P450 oxidoreductase (POR) and cytochrome b5 (CYB5). Therefore 46,XY DSD with apparent 17,20 lyase deficiency may be due to mutations in CYP17A1, POR or CYB5. Illustrated by patients harboring mutations in SRD5A2, normal development of the male external genitalia depends largely on dihydrotestosterone (DHT) which is converted from circulating testicular testosterone (T) through SRD5A2 in the genital skin. In the classic androgen biosynthetic pathway, T is produced from DHEA and androstenedione/-diol in the testis. However, recently found mutations in AKR1C2/4 genes in undervirilized 46,XY individuals have established a role for a novel, alternative, backdoor pathway for fetal testicular DHT synthesis. In this pathway, which has been first elucidated for the tammar wallaby pouch young, 17-hydroxyprogesterone is converted directly to DHT by 5α-3α reductive steps without going through the androgens of the classic pathway. Enzymes AKR1C2/4 catalyse the critical 3αHSD reductive reaction which feeds 17OH-DHP into the backdoor pathway. In conclusion, androgen production in the fetal testis seems to utilize two pathways but their exact interplay remains to be elucidated.