936 resultados para Ultra-trace analysis
Resumo:
Stirred Mills are becoming increasingly used for fine and ultra-fine grinding. This technology is still poorly understood when used in the mineral processing context. This makes process optimisation of such devices problematic. 3D DEM simulations of the flow of grinding media in pilot scale tower mills and pin mills are carried out in order to investigate the relative performance of these stirred mills. In the first part of this paper, media flow patterns and energy absorption rates and distributions were analysed to provide a good understanding of the media flow and the collisional environment in these mills. In this second part we analyse steady state coherent flow structures, liner stress and wear by impact and abrasion. We also examine mixing and transport efficiency. Together these provide a comprehensive understanding of all the key processes operating in these mills and a clear understanding of the relative performance issues. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Stirred mills are becoming increasingly used for fine and ultra-fine grinding. This technology is still poorly understood when used in the mineral processing context. This makes process optimisation of such devices problematic. 3D DEM simulations of the flow of grinding media in pilot scale tower mills and pin mills are carried out in order to investigate the relative performance of these stirred mills. Media flow patterns and energy absorption rates and distributions are analysed here. In the second part of this paper, coherent flow structures, equipment wear and mixing and transport efficiency are analysed. (C) 2006 Published by Elsevier Ltd.
Resumo:
To investigate the stability of trace reactivation in healthy older adults, 22 older volunteers with no significant neurological history participated in a cross-modal priming task. Whilst both object relative center embedded (ORC) and object relative right branching (ORR) sentences is-ere employed, working memory load was reduced by limiting the number of wordy separating the antecedent front the gap for both sentence types. Analysis of the results did not reveal any significant trace reactivation for the ORC or ORR sentences. The results did reveal, however, a positive correlation between age and semantic printing at the pre-gap position and a negative correlation between age and semantic printing at the gap position for ORC sentences. In contrast, there was no correlation between age and priming effects for the ORR sentences. These results indicated that trace reactivation may be sensitive to a variety of age related factors, including lexical activation and working memory. The implications of these results for sentence processing in the older population arc discussed.
Resumo:
The software implementation of the emergency shutdown feature in a major radiotherapy system was analyzed, using a directed form of code review based on module dependences. Dependences between modules are labelled by particular assumptions; this allows one to trace through the code, and identify those fragments responsible for critical features. An `assumption tree' is constructed in parallel, showing the assumptions which each module makes about others. The root of the assumption tree is the critical feature of interest, and its leaves represent assumptions which, if not valid, might cause the critical feature to fail. The analysis revealed some unexpected assumptions that motivated improvements to the code.
Resumo:
The organic matter in five oil shales (three from the Kimmeridge Clay sequence, one from the Oxford Clay sequence and one from the Julia Creek deposits in Australia) has been isolated by acid demineralisation, separated into kerogens and bitumens by solvent extraction and then characterised in some detail by chromatographic, spectroscopic and degradative techniques. Kerogens cannot be characterised as easily as bitumens because of their insolubility, and hence before any detailed molecular information can be obtained from them they must be degraded into lower molecular weight, more soluble components. Unfortunately, the determination of kerogen structures has all too often involved degradations that were far too harsh and which lead to destruction of much of the structural information. For this reason a number of milder more selective degradative procedures have been tested and used to probe the structure of kerogens. These are: 1. Lithium aluminium hydride reduction. - This procedure is commonly used to remove pyrite from kerogens and it may also increase their solubility by reduction of labile functional groups. Although reduction of the kerogens was confirmed, increases in solubility were correlated with pyrite content and not kerogen reduction. 2. O-methylation in the presence of a phase transfer catalyst. - By the removal of hydrogen bond interactions via O-methylation, it was possible to determine the contribution of such secondary interactions to the insolubility of the kerogens. Problems were encountered with the use of the phase transfer catalyst. 3. Stepwise alkaline potassium permanganate oxidation. - Significant kerogen dissolution was achieved using this procedure but uncontrolled oxidation of initial oxidation products proved to be a problem. A comparison with the peroxytrifluoroaceticacid oxidation of these kerogens was made. 4. Peroxytrifluoroacetic acid oxidation. - This was used because it preferentially degrades aromatic rings whilst leaving any benzylic positions intact. Considerable conversion of the kerogens into soluble products was achieved with this procedure. At all stages of degradation the products were fully characterised where possible using a variety of techniques including elemental analysis, solution state 1H and 13C nuclear magnetic resonance, solid state 13C nuclear magnetic resonance, gel-permeationchromatography, gas chromatography-mass spectroscopy, fourier transform infra-red spectroscopy and some ultra violet-visible spectroscopy.
Resumo:
This thesis is dedicated to the production and analysis of thin hydrogenated amorphous carbon films. A cascaded arc plasma source was used to produce a high density plasma of hydrocarbon radicals that deposited on a substrate at ultra low energies. The work was intended to create a better understanding of the mechanisms responsible for the film formation, by an extensive analysis on the properties of the films in correlation with the conditions used in the plasma cell. Two different precursors were used: methane and acetylene. They revealed a very different picture for the mechanism of film formation and properties. Methane was less successful, and the films formed were soft, with poor adhesion to the substrate and decomposing with time. Acetylene was the better option, and the films formed in this case were harder, with better adhesion to the substrate and stable over time. The plasma parameters could be varied to change the character of films, from polymer-like to diamond-like carbon. Films deposited from methane were grown at low deposition rates, which increased with the increase in process pressure and source power and decreased with the increase in substrate temperature and in hydrogen fraction in the carrier gas. The films had similar hydrogen content, sp3 fractions, average roughness (Ra) and low hardness. Above a deposition temperature of 350°C graphitization occurred - an increase in the sp2 fraction. A deposition mechanism was proposed, based upon the reaction product of the dissociative recombination of CH4+. There were small differences between the chemistries in the plasma at low and high precursor flow rates and low and high substrate temperatures; all experimental conditions led to formation of films that were either polymer-like, soft amorphous hydrogenated carbon or graphitic-like in structure. Films deposited from acetylene were grown at much higher deposition rates on different substrates (silicon, glass and plastics). The film quality increased noticeably with the increase of relative acetylene to argon flow rate, up to a certain value, where saturation occurred. With the increase in substrate temperature and the lowering of the acetylene injection ring position further improvements in film quality were achieved. The deposition process was scaled up to large area (5 x 5 cm) substrates in the later stages of the project. A deposition mechanism was proposed, based upon the reaction products of the dissociative recombination of C2H2 +. There were large differences between the chemistry in the plasma at low and medium/high precursor flow rates. This corresponded to large differences in film properties from low to medium flow rates, when films changed their character from polymer-like to diamond-like, whereas the differences between films deposited at medium and high precursor flow rates were small. Modelling of the film growth on silicon substrates was initiated and it explained the formation of sp2 and sp3 bonds at these very low energies. However, further improvements to the model are needed.
Resumo:
AMS Subj. Classification: MSC2010: 42C10, 43A50, 43A75
Resumo:
Peroxiredoxin-2 (PRDX-2) belongs to a family of thiol containing proteins and is important for antioxidant defense, redox signaling and cell function. This study examined whether lymphocyte PRDX-2 levels are altered over one month following ultra-endurance exercise. Nine middle-aged men participated in a 145 mile ultra-endurance running race event. Blood drawing was undertaken immediately before, upon completion/retirement, and at one, seven and twenty eight-days following the race. PRDX-2 levels were examined at each time-point, for all participants (n=9) by reducing SDS-PAGE and western blotting. Further analysis using non-reducing SDS-PAGE and western blotting was undertaken in a sub-group of men who completed the race (n = 4) to investigate PRDX-2 oligomeric state (indicative of oxidation state). Ultra-endurance exercise caused a significant alteration in lymphocyte PRDX-2 levels (F(4,32) 3.409, p=0.020, η2 =0.299): seven-days after the race PRDX-2 levels fell by 70% (p=0.013) and at twenty eight-days after the race returned to near-normal levels. PRDX-2 dimers (intracellular reduced PRDX-2 monomers) in three of the four participants, who finished the race, were increased upon race completion. Furthermore, PRDX-2 monomers (intracellular over-oxidized PRDX-2 monomers) in two of these four participants were present upon race completion, but absent seven-days after the race. This study found that PRDX-2 levels in lymphocytes were reduced below normal levels seven-days after an ultra-endurance running race. We suggest that excessive reactive oxygen species production, induced by ultra-endurance exercise may, in part, explain the depletion of lymphocyte PRDX-2 by triggering its turnover after oxidation.
Resumo:
Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.
Resumo:
The need for elemental analysis of biological matrices such as bone, teeth, and plant matter for sourcing purposes has emerged within the forensic and geochemical laboratories. Trace elemental analyses for the comparison of materials such as glass by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS has been shown to offer a high degree of discrimination between different manufacturing sources. Unit resolution ICP-MS instruments may suffer from some polyatomic interferences including 40Ar16O+, 40Ar 16O1H+, and 40Ca 16O+ that affect iron measurement at trace levels. Iron is an important element in the analysis of glass and also of interest for the analysis of several biological matrices. A comparison of the analytical performance of two different ICP-MS systems for iron analysis in glass for determining the method detection limits (MDLs), accuracy, and precision of the measurement is presented. Acid digestion and laser ablation methods are also compared. Iron polyatomic interferences were reduced or resolved by using dynamic reaction cell and high resolution ICP-MS. MDLs as low as 0.03 μg g-1 and 0.14 μg g-1 for laser ablation and solution based analyses respectively were achieved. The use of helium as a carrier gas demonstrated improvement in the detection limits of both iron isotopes (56Fe and 57Fe) in medium resolution for the HR-ICP-MS and with a dynamic reaction cell (DRC) coupled to a quadrupole ICP-MS system. ^ The development and application of robust analytical methods for the quantification of trace elements in biological matrices has lead to a better understanding of the potential utility of these measurements in forensic chemical analyses. Standard reference materials (SRMs) were used in the development of an analytical method using HR-ICP-MS and LA-HR-ICP-MS that was subsequently applied on the analysis of real samples. Bone, teeth and ashed marijuana samples were analyzed with the developed method. ^ Elemental analysis of bone samples from 12 different individuals provided discrimination between individuals, when femur and humerus bones were considered separately. Discrimination of 14 teeth samples based on elemental composition was achieved with the exception of one case where samples from the same individual were not associated with each other. The discrimination of 49 different ashed plant (cannabis) samples was achieved using the developed method. ^
Resumo:
Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.
Resumo:
Variations in trace element abundances with depth in soils and sediments may be due to natural processes or reflect anthropogenic influences. The depth related variations of five major elements (Fe, Si, Al, Ca and Mg), seventeen trace elements (Mn, Cr, Ti, P, Ni, Ba, Sc, Sr, Sb, Zn, Pb, Cd, Co, V, Be, Cu and Y) and volatile loss patterns were examined for sediment cores from five sites in South Florida (Lake Okeechobee, SFWMD Water Conservation area 3B, F.I.U., the Everglades and Chekika State Recreation Area). Principal component analysis of the chemical data combined with microscopic examination of the soils reveal that depth-related variations can be explained by varying proportions of three natural soil constituents and one anthropogenic component. The results can be used as a geochemical baseline for human influence on South Florida soils.
Resumo:
The trace element content of different bog ores has been measured and it appeared that most of these elements are enriched in the manganiferous bog ores as compared with the ferriferous ones. The manganiferous bog ores have also proved to have a higher radioactivity than the ferriferous ones.
Resumo:
Sea floor dredging by the H.M.S. Challenger, the U.S.S. Albatross, the U.S.S. EPC(R) 857, and vessels of the Scripps Institution of Oceanography shows that extensive deposits of manganese nodules are on the deep sea floor and that crusts of manganese dioxide cover many seamounts. Sea floor photography reveals that in some places these crusts are quite continuous and the nodules are closely packed. These crusts and nodules are fully oxidized and hydrated mixtures of man¬ganese and iron plus earthy impurities. Also, relatively high concen¬trations of the trace elements nickel, copper, and cobalt are present.
Resumo:
The aim of this Thesis work is to study the multi-frequency properties of the Ultra Luminous Infrared Galaxy (ULIRG) IRAS 00183-7111 (I00183) at z = 0.327, connecting ALMA sub-mm/mm observations with those at high energies in order to place constraints on the properties of its central power source and verify whether the gas traced by the CO may be responsible for the obscuration observed in X-rays. I00183 was selected from the so-called Spoon diagnostic diagram (Spoon et al. 2007) for mid-infrared spectra of infrared galaxies based on the equivalent width of the 6.2 μm Polycyclic Aromatic Hydrocarbon (PAH) emission feature versus the 9.7 μm silicate strength. Such features are a powerful tool to investigate the contribution of star formation and AGN activity in this class of objects. I00183 was selected from the top-left region of the plot where the most obscured sources, characterized by a strong Si absorption feature, are located. To link the sub-mm/mm to the X-ray properties of I00183, ALMA archival Cycle 0 data in Band 3 (87 GHz) and Band 6 (270 GHz) have been calibrated and analyzed, using CASA software. ALMA Cycle 0 was the Early Science program for which data reprocessing is strongly suggested. The main work of this Thesis consisted in reprocessing raw data to provide an improvement with respect to the available archival products and results, which were obtained using standard procedures. The high-energy data consists of Chandra, XMM-Newton and NuSTAR observations which provide a broad coverage of the spectrum in the energy range 0.5 − 30 keV. Chandra and XMM archival data were used, with an exposure time of 22 and 22.2 ks, respectively; their reduction was carried out using CIAO and SAS software. The 100 ks NuSTAR are still private and the spectra were obtained by courtesy of the PI (K. Iwasawa). A detailed spectral analysis was done using XSPEC software; the spectral shape was reproduced starting from simple phenomenological models, and then more physical models were introduced to account for the complex mechanisms that involve this source. In Chapter 1, an overview of the scientific background is discussed, with a focus on the target, I00183, and the Spoon diagnostic diagram, from which it was originally selected. In Chapter 2, the basic principles of interferometry are briefly introduced, with a description of the calibration theory applied to interferometric observations. In Chapter 3, ALMA and its capabilities, both current and future, are shown, explaining also the complex structure of the ALMA archive. In Chapter 4, the calibration of ALMA data is presented and discussed, showing also the obtained imaging products. In Chapter 5, the analysis and discussion of the main results obtained from ALMA data is presented. In Chapter 6, the X-ray observations, data reduction and spectral analysis are reported, with a brief introduction to the basic principle of X-ray astronomy and the instruments from which the observations were carried out. Finally, the overall work is summarized, with particular emphasis on the main obtained results and the possible future perspectives.