944 resultados para Ubiquitin promoter
Resumo:
This report describes a 32-year-old woman presenting since childhood with progressive calcium pyrophosphate disease (CPPD), characterized by severe arthropathy and chondrocalcinosis involving multiple peripheral joints and intervertebral disks. Because ANKH mutations have been previously described in familial CPPD, the proband's DNA was assessed at this locus by direct sequencing of promoter and coding regions and revealed 3 sequence variants in ANKH. Sequences of exon 1 revealed a novel isolated nonsynonymous mutation (c.13 C>T), altering amino acid in codon 5 from proline to serine (CCG>TCG). Sequencing of parental DNA revealed an identical mutation in the proband's father but not the mother. Subsequent clinical evaluation demonstrated extensive chondrocalcinosis and degenerative arthropathy in the proband's father. In summary, we report a novel mutation, not previously described, in ANKH exon 1, wherein serine replaces proline, in a case of early-onset severe CPPD associated with metabolic abnormalities, with similar findings in the proband's father.
Resumo:
Familial articular chondrocalcinosis (CC) was Wrst reported in 1963. It is characterised by multiple calciWcations of hyaline and Wbrous cartilage in the joints and intervertebral discs. Mutations in ANKH have been identified in several pedigrees as a monogenic cause for this disorder. ANKH is a key protein in pyrophosphate metabolism and is involved in pyrophosphate transport across the cell membrane. The objective of this work was to screen ANKH and ENPP1, two key genes in pyrophosphate metabolism, in Slovakian kindreds with familial CC. DNA samples from 25 individuals (10 aVected, 15 unaVected) from 8 families were obtained. The promoter, coding regions and intron-exon boundaries of ANKH and ENPP1 were sequenced. Twelve DNA sequence variants, six in each gene, were identiWed. All the variants had been previously identified. None segregated with the disease. Our results suggest that neither ANKH nor ENPP1 mutations are the cause of CC in these families, indicating that possibly other major genes are involved in the aethiopathogenesis of this condition in these families.
Resumo:
We performed a genome-wide association study (GWAS) in 1705 Parkinson's disease (PD) UK patients and 5175 UK controls, the largest sample size so far for a PD GWAS. Replication was attempted in an additional cohort of 1039 French PD cases and 1984 controls for the 27 regions showing the strongest evidence of association (P < 10 4). We replicated published associations in the 4q22/SNCA and 17q21/MAPT chromosome regions (P < 10 10) and found evidence for an additional independent association in 4q22/SNCA.A detailed analysis of the haplotype structure at 17q21 showed that there are three separate risk groups within this region. We found weak but consistent evidence of association for common variants located in three previously published associated regions (4p15/BST1, 4p16/GAK and 1q32/PARK16). We found no support for the previously reported SNP association in 12q12/LRRK2. We also found an association of the two SNPs in 4q22/SNCA with the age of onset of the disease. © The Author 2010. Published by Oxford University Press.
Resumo:
Objective To investigate the association of CD14 and Toll-like receptor (TLR4) with ankylosing spondylitis (AS). Methods A promoter variant in CD14 and 2 coding polymorphisms in TLR4 were investigated in UK and Finnish families with AS and in a UK case-control study. A metaanalysis of published TLR4 and CD14 studies was performed. Results In the Finnish study the CD74-260bp T variant showed an association (p = 0.006), and the common 2-marker TLR4 haplotype showed a weak association (global p = 0.03), with AS. No associations were seen in the UK based studies or in the metaanalyses. Conclusion CD14 and TLR4 showed an association with AS in the Finns only.
Resumo:
Objectives. To determine whether genetic polymorphisms in or near the transforming growth factor β1 (TGFB1) locus were associated d with susceptibility to or severity of ankylosing spondylitis (AS). Methods. Five intragenic single-nucleotide polymorphisms (SNP) and three microsatellite markers flanking the TGFB1 locus were genotyped. Seven hundred and sixty-two individuals from 184 multiplex families were genotyped for the microsatellite markers and two of the promoter SNPs. One thousand and two individuals from 212 English and 170 Finnish families with AS were genotyped for all five intragenic SNPs. A structured questionnaire was used to assess the age of symptom onset, disease duration and disease severity scores, including the BASDAI (Bath Ankylosing Spondylitis Disease Activity Index) and BASFI (Bath Ankylosing Spondylitis Functional Index). Results. A weak association was noted between the rare TGFB1 + 1632 T allele and AS in the Finnish population (P = 0.04) and in the combined data set (P = 0.03). No association was noted between any other SNPs or SNP haplotype and AS, even among those families with positive non-parametric linkage scores. The TGFB1 +1632 polymorphism was also associated with a younger age of symptom onset (English population, allele 2 associated with age of onset greater by 4.2 yr, P = 0.05; combined data set, allele 2 associated with age of onset greater by 3.2 yr, P = 0.02). A haplotype of coding region SNPs (TGFB1 +869/ +915+1632 alleles 2/1/2) was associated with age of symptom onset in both the English parent-case trios and the combined data set (English data set, haplotype 2/1/2 associated with age of onset greater by 4.9 yr, P = 0.03; combined data set, haplotype 2/1/2 associated with greater age of onset by 4.2 yr, P = 0.006). Weak linkage with AS susceptibility was noted and the peak LOD score was 1.3 at distance 2 cM centromeric to the TGFB1 gene. No other linkage or association was found between quantitative traits and the markers. Conclusion. This study suggests that the polymorphisms within the TGFB1 gene play at most a small role in AS and that other genes encoded on chromosome 19 are involved in susceptibility to the disease.
Resumo:
Genetic polymorphisms of the IL10 promoter region have been implicated in many autoimmune diseases, including seronegative spondyloarthropathies. We studied three SNPs (IL10-1087,-824, and -597) and two microsafellites(IL10R and IL10G) lying within the promoter region of IL10 for association with susceptibility to and clinical manifestations of ankylosing spondylitis (AS), a common form of spondyloarthritis. Four hundred and sixty-eight individuals from 182 Finnish families affected with AS were studied. No association between individual IL10 promoter region polymorphisms or marker haplotype was observed with susceptibility to AS, but weak association was noted between the IL10-597 and -824 SNPs and age of disease onset (P= 0.01 for each SNP). The IL10.G4 allele was associated with BASFI (corrected for disease duration) (P= 0.03). We conclude that IL10 promoter polymorphisms have no significant effect on susceptibility to AS, but may play a minor role in determining age of disease onset and disease severity. © 2003 Nature Publishing Group All rights reserved.
Resumo:
The objective of this study was to investigate TNF promoter region polymorphisms for association with susceptibility to ankylosing spondylitis (AS). The TNF -238 and -308 polymorphisms were genotyped in 306 English AS cases and 204 ethnically matched healthy B27-positive controls, and 96 southern German AS cases, 58 B27-positive and 251 B27-negative ethnically matched controls. Additionally, the TNF -376 polymorphism was genotyped in the southern German cases and controls. In the southern German AS patients a significant reduction in TNF -308.2 alleles was seen, compared with B27 positive controls (odds ratio 0.4, P= 0.03, 95% confidence interval 0.2-0.9), but no difference in allele frequencies was observed at TNF -238. Significant association between AS and both TNF -238 and TNF -308 was excluded in the English cases. These results confirm previous observations in the southern German population of association between TNF promoter region polymorphisms and AS, but the lack of association in the English population suggests that these polymorphisms themselves are unlikely to be directly involved. More likely, a second, non-HLA-B, MHC locus is involved in susceptibility to AS in these two populations.
Resumo:
Peanut (Arachis hypogaea) seed lectin, PNA is widely used to identify tumor specific antigen (T-antigen), Gal beta 1-3GalNAc on the eukaryotic cell surface. The functional amino acid coding region of a cDNA clone, pBSH-PN was PCR amplified and cloned downstream of the polyhedrin promoter in the Autographa californica nucleopolyhedrovirus (AcNPV) based transfer vector pVL1393. Co-transfection of Spodoptera frugiperda cells (Sf9) with the transfer vector, pAcPNA and AcRP6 (a recombinant AcNPV having B-gal downstream of the polyhedrin promoter) DNAs produced a recombinant virus, AcPNA which expresses PNA. Infection of suspension culture of Sf9 cells with plaque purified AcPNA produced as much as 9.8 mg PNA per liter (2.0 x 10(6) cells/ml) of serum-free medium. Intracellularly expressed protein (re-PNA) was purified to apparent homogeneity by affinity chromatography using ECD-Sepharose. Polyclonal antibodies against natural PNA (n-PNA) crossreacted with re-PNA. The subunit molecular weight (30 kDa), hemagglutination activity, and carbohydrate specificity of re-PNA were found to be identical to that of n-PNA, thus confirming the abundant production of a functionally active protein in the baculovirus expression system.
Resumo:
In Part One of ʻFrom the Genius of the Man to the Man of Geniusʼ I argued that classical and medieval inscriptions of genius figures suggest a coevalence between characters in their respective cosmologies, making it relatively more difficult to delineate Man from “spirits” and “other organisms”. The labour that genii performed flowed around two significant tropes of production and reproduction whose specificities were inflected in and across sources. In medieval poetry, for instance, genius figures took up a new role in regard to the reproduction trope, as promoter of virtue (in the form of censuring the seven deadly sins) and condemner of vice (in the form of prohibition against same sex intercourse). The sedimentation (complex processes of character-formation), directionality (patterns of descent) and sexual ecology (emergence of a field of ethics) that the medieval literature embodies also indexes an opening disarticulation of Man from universe and the possibility of grounding “morality” in and as His love choices. Through a series of narrative structures, binary concepts and new sources of authority under Christianity the figure now referred to in philosophy as “the subject” is given early grounds upon which to form in the medieval poems.
Resumo:
Several late gene expression factors (Lefs) have been implicated in fostering high levels of transcription from the very late gene promoters of polyhedrin and p10 from baculoviruses. We cloned and characterized from Bombyx mori nuclear polyhedrosis virus a late gene expression factor (Bmlef2) that encodes a 209-amino-acid protein harboring a Cys-rich C-terminal domain. The temporal transcription profiles of lef2 revealed a 1.2-kb transcript in both delayed early and late periods after virus infection. Transcription start site mapping identified the presence of an aphidicolin-sensitive late transcript arising from a TAAG motif located at -352 nucleotides and an aphidicolin-insensitive early transcript originating from a TTGT motif located 35 nucleotides downstream to a TATA box at -312 nucleotides, with respect to the +1 ATG of lef2. BmLef2 trans-activated very late gene expression from both polyhedrin and p10 promoters in transient expression assays. Internal deletion of the Cys-rich domain from the C-terminal region abolished the transcriptional activation. Inactivation of Lef2 synthesis by antisense lef2 transcripts drastically reduced the very late gene transcription but showed little effect on the expression from immediate early promoter. Decrease in viral DNA synthesis and a reduction in virus titer were observed only when antisense lef2 was expressed under the immediate early (ie-1) promoter. Furthermore, the antisense experiments suggested that lef2 plays a direct role in very late gene transcription.
Resumo:
We have designed a novel coupled transcriptional construct wherein Escherichia coil uracil DNA glycosylase (UDC:) and Bacillus subtilis phage PBS-2 encoded uracil DNA glycosylase inhibitor protein (Ugi) genes were cloned in tandem, downstream of an inducible promoter (P-trc). Use of this bicistronic operon has allowed purification of large amounts of UDG-Ugi complex formed in vivo. The system has also been exploited for purification of large amounts of Ugi. While establishing the expression system, one of the constructs showed detectable suppression of UAG termination codon and resulted in accumulation of a minor population of a putative readthrough polypeptide cor responding to UDG. We discuss the likely occurrence of such a phenomenon in overproduction of other recombinant proteins. Finally, the usefulness of the operon construct in convenient mutational analysis to study the mechanism of UDG-Ugi interaction is also discussed.
Resumo:
Biotechnology has the potential to improve sugar cane, one of the world's major crops for food and fuel. This research describes the detailed characterisation of introns and their potential for enhancing transgene expression in sugar cane via intron-mediated enhancement (IME). IME is a phenomenon whereby an intron enhances gene expression from a promoter. Current knowledge on the mechanism of IME or its potential for enhancing gene expression in sugar cane is limited. A better understanding of the factors responsible for IME will help develop new molecular tools that facilitate high levels of constitutive and tissue-specific gene expression in this crop.
Resumo:
Background: Phosphorylation by protein kinases is a common event in many cellular processes. Further, many kinases perform specialized roles and are regulated by non-kinase domains tethered to kinase domain. Perturbation in the regulation of kinases leads to malignancy. We have identified and analysed putative protein kinases encoded in the genome of chimpanzee which is a close evolutionary relative of human. Result: The shared core biology between chimpanzee and human is characterized by many orthologous protein kinases which are involved in conserved pathways. Domain architectures specific to chimp/human kinases have been observed. Chimp kinases with unique domain architectures are characterized by deletion of one or more non-kinase domains in the human kinases. Interestingly, counterparts of some of the multi-domain human kinases in chimp are characterized by identical domain architectures but with kinase-like non-kinase domain. Remarkably, out of 587 chimpanzee kinases no human orthologue with greater than 95% sequence identity could be identified for 160 kinases. Variations in chimpanzee kinases compared to human kinases are brought about also by differences in functions of domains tethered to the catalytic kinase domain. For example, the heterodimer forming PB1 domain related to the fold of ubiquitin/Ras-binding domain is seen uniquely tethered to PKC-like chimpanzee kinase. Conclusion: Though the chimpanzee and human are evolutionary very close, there are chimpanzee kinases with no close counterpart in the human suggesting differences in their functions. This analysis provides a direction for experimental analysis of human and chimpanzee protein kinases in order to enhance our understanding on their specific biological roles.
Resumo:
Transactivator protein C of bacteriophage mu is essential for the transition from middle to late gene expression during the phage life cycle. The unusual, multistep activation of mom promoter (Pmom) by C protein involves activator-mediated promoter unwinding to recruit RNA polymerase and subsequent enhanced promoter clearance of the enzyme. To achieve this, C binds its site overlapping the -35 region of the mom promoter with a very high affinity, in Mg2+-dependent fashion. Mg2+-mediated conformational transition in C is necessary for its DNA binding and transactivation. We have determined the residues in C which coordinate Mg2+, to induce allosteric transition in the protein, required for the specific interaction with DNA. Residues E26 and D40 in the putative metal binding motif (E26X10D37X2D40) present toward the N-terminus of the protein are found to be important for Mg2+ ion binding. Mutations in these residues lead to altered Mg2+-induced conformation, compromised DNA binding, and reduced levels of transcription activation. Although Mg2+ is widely used in various DNA transaction reactions, this report provides the first insights on the importance of the metal ion-induced allosteric transitions in regulating transcription factor function.
Resumo:
An A-DNA type double helical conformation was observed in the single crystal X-ray structure of the octamer d(G-G-T-A-T-A-C-C), 1, and its 5-bromouracil-containing analogue, 2. The structure of the isomorphous crystals (space group P61) was solved by a search technique based on packing criteria and R-factor calculations, with use of only low order data. At the present stage of refinement the R factors are 31 % for 1 and 28 % for 2 at a resolution of 2.25 A (0.225 nm). The molecules interact through their minor grooves by hydrogen bonding and base to sugar van der Waals contacts. The stable A conformation observed in the crystal may have some structural relevance to promoter regions where the T-A-T-A sequence is frequently found.