891 resultados para UV-spectrohotometry
Resumo:
The performance criteria of piezoelectric polymers based on polyvinylidene flouride (PVDF) in complex space environments have been evaluated. Thin films of these materials are being explored as in-situ responsive materials for large aperture space-based telescopes with the shape deformation and optical features dependent on long-term deformation and optical features dependent on long-term degradation effects, mainly due to thermal cycling, vacuum UV exposure and atomic oxygen. A summary of previous studies related to materials testing and performance prediction based on a laboratory environment is presented. The degradation pathways are a combination of molecular chemical changes primarily induced via radiative damage and physical degradation processes due to temperature and atomic oxygen exposure resulting in depoling, loss of orientation and surface erosing. Experimental validation for these materials to be used in space is being conducted as part of MISSE-6 (Materials International Space Station Experiment) with an overview of the experimental strategies discussed here.
Resumo:
The effects of simulated low earth orbit conditions on vinylidene-fluoride based thin-film piezoelectrics for use in lightweight, large surface area spacecraft such as telescope mirrors and antennae is presented. The environmental factors considered as having the greatest potential to cause damage are temperature, atomic oxygen and vacuum UV radiation. Using the piezoelectric strain coefficients and bimorph deflection measurements the piezoelectric performance over the temperature range -100 to +150°C was studied. The effects of simultaneous AO/VUV exposure were also examined and films characterized by their piezoelectric, surface, and thermal properties. Two fluorinated piezoelectric polymers, poly(vinylidene fluoride) and poly(vinylidene fluoride-co-trifluoroethylene), were adversely affected at elevated temperatures due to depoling caused by randomization of the dipole orientation, while AO/VUV contributed little to depoling but did cause significant surface erosion and, in the case of P(VDF-TrFE), bulk crosslinking. These results highlight the importance of materials selection for use in space environments.
Resumo:
Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies.
Resumo:
Porphyrins are one of Nature’s essential building blocks that play an important role in several biological systems including oxygen transport, photosynthesis, and enzymes. Their capacity to absorb visible light, facilitate oxidation and reduction, and act as energy- and electron-transfer agents, in particular when several are held closely together, is of interest to chemists who seek to mimic Nature and to make and use these compounds in order to synthesise novel advanced materials. During this project 26 new 5,10-diarylsubstituted porphyrin monomers, 10 dimers, and 1 tetramer were synthesised. The spectroscopic and structural properties of these compounds were investigated using 1D/2D 1H NMR, UV/visible, ATR-IR and Raman spectroscopy, mass spectrometry, X-ray crystallography, electrochemistry and gel permeation chromatography. Nitration, amination, bromination and alkynylation of only one as well as both of the meso positions of the porphyrin monomers have resulted in the expansion of the synthetic possibilities for the 5,10-diarylsubstituted porphyrins. The development of these new porphyrin monomers has led to the successful synthesis of new azo- and butadiyne-linked dimers. The functionalisation of these compounds was investigated, in particular nitration, amination, and bromination. The synthesised dimers containing the azo bridge have absorption spectra that show a large split in the Soret bands and intense Q-bands that have been significantly redshifted. The butadiyne dimers also have intense, red-shifted Q-bands but smaller Soret band splittings. Crystal structures of two new azoporphyrins have been acquired and compared to the azoporphyrin previously synthesised from 5,10,15- triarylsubstituted porphyrin monomers. A completely new cyclic porphyrin oligomer (CPO) was synthesised comprising four porphyrin monomers linked by azo and butadiyne bridges. This is the first cyclic tetramer that has both the azo and butadiyne linking groups. The absorption spectrum of the tetramer exhibits a large Soret split making it more similar to the azo- dimers than the butadiyne-linked dimers. The spectroscopic characteristics of the synthesised tetramer have been compared to the characteristics of other cyclic porphyrin tetramers. The collected data indicate that the new synthesised cyclic tetramer has a more efficient ð-overlap and a better ground state electronic communication between the porphyrin rings.
Resumo:
Recent epidemiologic studies have suggested that ultraviolet radiation (UV) may protect against non-Hodgkin lymphoma (NHL), but few, if any, have assessed multiple indicators of ambient and personal UV exposure. Using the US Radiologic Technologists study, we examined the association between NHL and self-reported time outdoors in summer, as well as average year-round and seasonal ambient exposures based on satellite estimates for different age periods, and sun susceptibility in participants who had responded to two questionnaires (1994–1998, 2003–2005) and who were cancer-free as of the earlier questionnaire. Using unconditional logistic regression, we estimated the odds ratio (OR) and 95% confidence intervals for 64,103 participants with 137 NHL cases. Self-reported time outdoors in summer was unrelated to risk. Lower risk was somewhat related to higher average year-round and winter ambient exposure for the period closest in time, and prior to, diagnosis (ages 20–39). Relative to 1.0 for the lowest quartile of average year-round ambient UV, the estimated OR for successively higher quartiles was 0.68 (0.42–1.10); 0.82 (0.52–1.29); and 0.64 (0.40–1.03), p-trend = 0.06), for this age period. The lower NHL risk associated with higher year-round average and winter ambient UV provides modest additional support for a protective relationship between UV and NHL.
Resumo:
Proper application of sunscreen is essential as an effective public health strategy for skin cancer prevention. Insufficient application is common among sunbathers, results in decreased sun protection and may therefore lead to increased UV damage of the skin. However, no objective measure of sunscreen application thickness (SAT) is currently available for field-based use. We present a method to detect SAT on human skin for determining the amount of sunscreen applied and thus enabling comparisons to manufacturer recommendations. Using a skin swabbing method and subsequent spectrophotometric analysis, we were able to determine SAT on human skin. A swabbing method was used to derive SAT on skin (in mg sunscreen per cm2 of skin area) through the concentration–absorption relationship of sunscreen determined in laboratory experiments. Analysis differentiated SATs between 0.25 and 4 mg cm−2 and showed a small but significant decrease in concentration over time postapplication. A field study was performed, in which the heterogeneity of sunscreen application could be investigated. The proposed method is a low cost, noninvasive method for the determination of SAT on skin and it can be used as a valid tool in field- and population-based studies.
Resumo:
Photo-curable biodegradable macromers were prepared by ring opening polymerization of D,L-lactide (DLLA), (similar to)-caprolactone (CL) and 1,3-trimethylene carbonate (TMC) in the presence of glycerol or sorbitol as initiator and stannous octoate as catalyst, and subsequent methacrylation of the terminal hydroxyl groups. These methacrylated macromers, ranging in molecular weight from approximately 700 to 6000 g/mol, were cross-linked using ultraviolet (UV) light to form biodegradable networks. Homogeneous networks with high gel contents were prepared. One of the resins based on PTMC was used to prepare three-dimensional structures by stereo-lithography using a commercially available apparatus.
Resumo:
Photo-curable biodegradable macromers were prepared by ring opening polymerization of D,L-lactide (DLLA), ε-caprolactone (CL) and 1,3-trimethylene carbonate (TMC) in the presence of glycerol or sorbitol as initiator and stannous octoate as catalyst, and subsequent methacrylation of the terminal hydroxyl groups. These methacrylated macromers, ranging in molecular weight from approximately 700 to 6000 g/mol, were cross-linked using ultraviolet (UV) light to form biodegradable networks. Homogeneous networks with high gel contents were prepared. One of the resins based on PTMC was used to prepare three-dimensional structures by stereo-lithography using a commercially available apparatus.
Resumo:
In Queensland, Australia, the ultraviolet (UV) radiation levels are high (greater than UV Index 3) almost all year round. Although ambient UV is about three times higher in summer compared to winter, Queensland residents receive approximately equal personal doses of UV radiation within these seasons (Neale et al., 2010). Sun protection messages throughout the year are thus essential (Montague et al., 2001), need to reach all segments of the population, and should incorporate guidelines for maintenance of adequate vitamin D levels. Knowledge is an essential requirement to allow people to make health conscious decisions. Unprompted knowledge commonly requires a higher level of awareness or recency of acquisition compared to prompted recall (Waller et al., 2004). This paper thus reports further on the data from a 2008 population-based, cross-sectional telephone survey conducted in Queensland, Australia (2,001 participants; response rate=45%) (Youl et al., 2009). It was the aim of this research to establish the level of, and factors predicting, unprompted and prompted knowledge about health and vitamin D.
Resumo:
Purpose: The purpose of this paper is to illustrate the various types of paradoxes underlying the nature of creativity, which in turn affect the foundations of organizations and organization change in the 21 st century. The film industry best illustrate the interaction of such paradoxes, creativity and organizational change. This paper examines how small and medium-sized finns in the emerging Singapore film industry stay competitive by managing or not managing these paradoxes. Design/methodology/approach: The study reported in this paper explores the opinions, attitudes and experiences of key decision-makers in the Singaporean film industry. Findings: This paper introduces the idea that an analysis of the various paradoxes driven by creativity in today's society provides hints on a deeper understanding of organizational change and development in the 21" century. Practical implications: The findings indicate that managers need practical tools that will enable them to comprehend and better manage these emerging contradictions and fully understand the implications of paradoxical situations and organizational change. Research limitations: The distinctive nature of the Singaporean firms means that certain factors examined may be more or less significant in the film industry in other countries. Originality/value: The value of this paper lies in the knowledge that paradox considerations are becoming significant in understanding pluralism and the processes of organizational change.
Resumo:
A series of porphyrins substituted in one or two meso-positions by diphenylphosphine oxide groups has been prepared by the palladium catalysed reaction of diphenylphosphine or its oxide with the corresponding bromoporphyrins. Compounds {MDPP-[P(O)Ph2]n} (M = H2, Ni, Zn; H2DPP = 5,15-diphenylporphyrin; n = 1, 2) were isolated in yields of 60-95%. The reaction is believed to proceed via the conventional oxidative addition, phosphination and reductive elimination steps, as the stoichiometric reaction of η1-palladio(II) porphyrin [PdBr(H2DPP)(dppe)] (H2DPP = 5,15-diphenylporphyrin; dppe = 1,2-bis(diphenylphosphino)ethane) with diphenylphosphine oxide also results in the desired mono-porphyrinylphosphine oxide [H2DPP-P(O)Ph2]. Attempts to isolate the tertiary phosphines failed due to their extreme air-sensitivity. Variable temperature 1H NMR studies of [H2DPP-P(O)Ph2] revealed an intrinsic lack of symmetry, while fluorescence spectroscopy showed that the phosphine oxide group does not behave as a "heavy atom" quencher. The electron withdrawing effect of the phosphine oxide group was confirmed by voltammetry. The ligands were characterised by multinuclear NMR and UV-visible spectroscopy as well as mass spectrometry. Single crystal X-ray crystallography showed that the bis(phosphine oxide) nickel(II) complex {[NiDPP-[P(O)Ph2]2} is monomeric in the solid state, with a ruffled porphyrin core and the two P=O fragments on the same side of the average plane of the molecule. On the other hand, the corresponding zinc(II) complex formed infinite chains through coordination of one Ph2PO substituent to the neighbouring zinc porphyrin through an almost linear P=O---Zn unit, leaving the other Ph2PO group facing into a parallel channel filled with disordered water molecules. These new phosphine oxides are attractive ligands for supramolecular porphyrin chemistry.
Resumo:
Hollow micro-sized H2(H2O)Nb2O6 spheres constructed by nanocrystallites have been successfully synthesized via a bubble-template assisted hydrothermal process. In the reaction process, H2O2 acts as a bubble generator and plays a key role in the formation of the hollow structure. An in situ bubble-template mechanism has been proposed for the possible formation of the hollow structure. The spherelike assemblies of these H2(H2O)Nb2O6 nanoparticles have been transformed into their corresponding pseudohexagonal phase Nb2O5 through a moderate annealing dehydration process without destroying the hierarchical structure. Optical properties of the as-prepared hollow spheres were investigated. It is exciting that the absorption edge of the hollow Nb2O5 microspheres shifts about 18 nm to the violet compared with bulk powders in the UV/vis spectra, indicating its superior optical properties.
Resumo:
Hypertrophic scars are formed by collagen overproduction in wounded areas and often occur in victims of severe burns. There are several methods for hypertrophic scar remediation and silicone gel therapy is one of the more successful methods. Research by others has shown that the activity of these gels may be due to migration of amphiphilic silicone oligomers from the gel and into the dermis, down-regulating production of collagen by fibroblasts. Normal silicone oil (PDMS) does not produce the same effect on fibroblasts. The main purpose of this project is the introduction of a particular amphiphilic silicone rake copolymer into an appropriate network which can absorb and release the silicone copolymer on the scarred area. Hydrogels are polymeric crosslinked networks which can swell in water or a drug solution, and gradually release the drug when applied to the skin. The application of gel enhances the effectiveness of the therapy, reduces the period of treatment and can be comfortable for patients to use. Polyethylene glycol (PEG) based networks have been applied in this research, because the amphiphilic silicone rake copolymer to be used as a therapy has polyethylene oxide (PEO) as a side chain. These PEO side chains have very similar chemical structure to a PEG gel chain so enhancing both the compatibility and the diffusion of the amphiphilic silicone rake copolymer into and out of the gel. Synthesis of PEG-based networks has been performed by two methods: in situ silsesquioxane formation as crosslink with a sol-gel reaction under different conditions and UV curing. PEG networks have low mechanical properties which is a fundamental limitation of the polymer backbone. For mechanical properties enhancement, composite networks were synthesized using nano-silica with different surface modification. The chemical structure of in situ silsesquioxane in the dry network has been examined by Solid State NMR, Differential Scanning Calorimetry (DSC) and swelling measurements in water. Mechanical properties of dry networks were tested by Dynamic Mechanical Thermal Analysis (DMTA) to determine modulus and interfacial interaction between silica and the network. In this way a family of self-reinforced networks has been produced that have been shown to absorb and deliver the active amphiphilic silicone- PEO rake copolymer.
Resumo:
The heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works in the field of photocatalytic oxidation of toxic organic compounds such as phenols and dyes, predominant in waste water effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and dyes are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, mode of catalyst application, and calcinations temperature can play an important role on the photocatlytic degradation of organic compounds in water environment. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal and ion doping. Recent advances in TiO2 photocatalysis for the degradation of various phenols and dyes are also highlighted in this review.