969 resultados para U.S. Clean Coal Technology Demonstration Program
Resumo:
This paper presents a novel program annotation mechanism which enables students to obtain feedback from tutors on their programs in a far simpler and more efficient way than is possible with, for example, email. A common scenario with beginning students is to email tutors with copies of their malfunctioning programs. Unfortunately the emailed program often bears little resemblance to the program the student has been trying to make work; often it is incomplete, a different version and corrupted. We propose an annotation mechanism enabling students to simply and easily annotate their programs with comments asking for help. Similarly our mechanism enables tutors to view students’ programs and to reply to their comments in a simple and structured fashion. This means students can get frequent and timely feedback on their programs; tutors can provide such feedback efficiently, and hence students’ learning is greatly improved.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
This report demonstrates the development of: • Development of software agents for data mining • Link data mining to building model in virtual environments • Link knowledge development with building model in virtual environments • Demonstration of software agents for data mining • Populate with maintenance data
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
This article reports on the impact on student personal creativity of a longitudinal study that had as its major goal the creation of a unique intervention program for elementary students. The intervention was based on the National Profile and Statement (Curriculum Corporation, 1994a, 1994b) for the curriculum area of technology. The intervention program comprised thematically based units of work that integrated all eight Australian Key Learning Areas (KLA). A pretest/posttest control group design investigation (Campbell & Stanley, 1963) was undertaken with 580 students from 7 schools and 24 class groups that were randomly divided into 3 treatment groups. One group (10 classes) formed the control group. Another 7 classes received the year-long intervention program, while the remaining 7 classes received the intervention, but with the added seamless integration of their available classroom computer technologies. The effect of the intervention on the personal creativity characteristics of the students involved in the study was assessed using the Creativity Checklist, an instrument that was developed during the study. The results suggest that the purposeful integration of computer technology with the intervention program positively affects the personal creativity characteristics of students.
Resumo:
This report fully summarises a project designed to enhance commercial real estate performance within both operational and investment contexts through the development of a model aimed at supporting improved decision-making. The model is based on a risk adjusted discounted cash flow, providing a valuable toolkit for building managers, owners, and potential investors for evaluating individual building performance in terms of financial, social and environmental criteria over the complete life-cycle of the asset. The ‘triple bottom line’ approach to the evaluation of commercial property has much significance for the administrators of public property portfolios in particular. It also has applications more generally for the wider real estate industry given that the advent of ‘green’ construction requires new methods for evaluating both new and existing building stocks. The research is unique in that it focuses on the accuracy of the input variables required for the model. These key variables were largely determined by market-based research and an extensive literature review, and have been fine-tuned with extensive testing. In essence, the project has considered probability-based risk analysis techniques that required market-based assessment. The projections listed in the partner engineers’ building audit reports of the four case study buildings were fed into the property evaluation model developed by the research team. The results are strongly consistent with previously existing, less robust evaluation techniques. And importantly, this model pioneers an approach for taking full account of the triple bottom line, establishing a benchmark for related research to follow. The project’s industry partners expressed a high degree of satisfaction with the project outcomes at a recent demonstration seminar. The project in its existing form has not been geared towards commercial applications but it is anticipated that QDPW and other industry partners will benefit greatly by using this tool for the performance evaluation of property assets. The project met the objectives of the original proposal as well as all the specified milestones. The project has been completed within budget and on time. This research project has achieved the objective by establishing research foci on the model structure, the key input variable identification, the drivers of the relevant property markets, the determinants of the key variables (Research Engine no.1), the examination of risk measurement, the incorporation of risk simulation exercises (Research Engine no.2), the importance of both environmental and social factors and, finally the impact of the triple bottom line measures on the asset (Research Engine no. 3).
Resumo:
This report summarises the fi ndings of an innovation survey of the Australian construction industry undertaken by the BRITE Project of the CRC for Construction Innovation in 2004. The BRITE Innovation Survey can be viewed in full at www.brite.crcci.info.The objective of the BRITE project is to improve the incidence and quality of innovation in the Australian construction industry. Many stakeholders in the industry are sceptical about the potential for innovation and its likely benefi ts. Many also lack the linkages and capabilities required for successful innovation. The BRITE Project is redressing this situation through demonstration and benchmarking activities. The term ‘innovation’ is defi ned as a new or signifi cantly improved technology or advanced business practice. Innovation may be technological or organisational, and it may be new to the world, or just new to the industry or business concerned. The defi nition includes the adoption of existing advancements developed outside a particular business. The survey sample was drawn from 3,500 businesses in the road/bridge and commercial building sectors in New South Wales, Victoria and Queensland, covering main contractors, trade contractors, consultants, suppliers and clients. Onethird of this population was sampled and a response rate of almost 30% was achieved. The survey collected information about respondents’ perceptions of innovation determinants in the industry, comprising various aspects of business strategy and business environment.
Resumo:
With the rising levels of CO2 in the atmosphere, low-emission technologies with carbon dioxide capture and storage (CCS) provide one option for transforming the global energy infrastructure into a more environmentally, climate sustainable system. However, like many technology innovations, there is a social risk to the acceptance of CCS. This article presents the findings of an engagement process using facilitated workshops conducted in two communities in rural Queensland, Australia, where a demonstration project for IGCC with CCS has been announced. The findings demonstrate that workshop participants were concerned about climate change and wanted leadership from government and industry to address the issue. After the workshops, participants reported increased knowledge and more positive attitudes towards CCS, expressing support for the demonstration project to continue in their local area. The process developed is one that could be utilized around the world to successfully engage communities on the low carbon emission technology options.
Resumo:
In the previous phase of this project, 2002-059-B Case-Based Reasoning in Construction and Infrastructure Projects, demonstration software was developed using a case-base reasoning engine to access a number of sources of information on lifetime of metallic building components. One source of information was data from the Queensland Department of Public Housing relating to maintenance operations over a number of years. Maintenance information is seen as being a particularly useful source of data about service life of building components as it relates to actual performance of materials in the working environment. If a building is constructed in 1984 and the maintenance records indicate that the guttering was replaced in 2006, then the service life of the gutters was 22 years in that environment. This phase of the project aims to look more deeply at the Department of Housing data, as an example of maintenance records, and formulate methods for using this data to inform the knowledge of service lifetimes.
Resumo:
There are currently a number of issues of great importance affecting universities and the way in which their programs are now offered. Many issues are largely being driven top-down and impact both at a university-wide and at an individual discipline level. This paper provides a brief history of cartography and digital mapping education at the Queensland University of Technology (QUT). It also provides an overview of what is curriculum mapping and presents some interesting findings from the program review process. Further, this review process has triggered discussion and action for the review, mapping and embedding of graduate attributes within the spatial science major program. Some form of practical based learning is expected in vocationally oriented degrees that lead to professional accreditation and are generally regarded as a good learning exposure. With the restructure of academic programs across the Faculty of Built Environment and Engineering in 2006, spatial science and surveying students now undertake a formal work integrated learning unit. There is little doubt that students acquire the skills of their discipline (mapping science, spatial) by being immersed in the industry culture- learning how to process information and solve real-world problems within context. The broad theme of where geo-spatial mapping skills are embedded in this broad-based tertiary education course are examined with some focused discussion on the learning objectives, outcomes and examples of some student learning experiences
Resumo:
This paper looks at the challenges presented for the Australian Library and Information Association by its role as the professional association responsible for ensuring the quality of Australian library technician graduates. There is a particular focus on the issue of course recognition, where the Association's role is complicated by the need to work alongside the national quality assurance processes that have been established by the relevant technical education authorities. The paper describes the history of course recognition in Australia; examines the relationship between course recognition and other quality measures; and describes the process the Association has undertaken recently to ensure appropriate professional scrutiny in a changing environment of accountability.
Resumo:
Innovation Management (IM) in most knowledge based firms is used on an adhoc basis where senior managers use this term to leverage competitive edge without understanding its true meaning and how its robust application in organisation impacts organisational performance. There have been attempts in the manufacturing industry to harness the innovative potential of the business and apprehend its use as a point of difference to improve financial and non financial outcomes. However further work is required to innovatively extrapolate the lessons learnt to introduce incremental and/or radical innovation to knowledge based firms. An international structural engineering firm has been proactive in exploring and implementing this idea and has forged an alliance with the Queensland University of Technology to start the Innovation Management Program (IMP). The aim was to develop a permanent and sustainable program with which innovation can be woven through the fabric of the organisation. There was an intention to reinforce the firms’ vision and reinvigorate ideas and create new options that help in its realisation. This paper outlines the need for innovation in knowledge based firms and how this consulting engineering firm reacted to this exigency. The development of the Innovation Management Program, its different themes (and associated projects) and how they integrate to form a holistic model is also discussed. The model is designed around the need of providing professional qualification improvement opportunities for staff, setting-up organised, structured & easily accessible knowledge repositories to capture tacit and explicit knowledge and implement efficient project management strategies with a view to enhance client satisfaction. A Delphi type workshop is used to confirm the themes and projects. Some of the individual projects and their expected outcomes are also discussed. A questionnaire and interviews were used to collect data to select appropriate candidates responsible for leading these projects. Following an in-depth analysis of preliminary research results, some recommendations on the selection process will also be presented.