943 resultados para Two-phase anaerobic digestion
Resumo:
Foram utilizados dejetos produzidos por caprinos, em diferentes estádios fisiológicos e submetidos ao mesmo regime alimentar, nas quatro estações do ano. O objetivo foi avaliar o efeito das estações do ano sobre a digestão anaeróbia de resíduos de caprinos em biodigestores modelo batelada com volume útil de 60 L de substrato em fermentação e mantidos sob temperatura ambiente. Foram avaliadas as produções de biogás, as reduções de sólidos voláteis (SV), os potenciais de produção (m³ de biogás/kg de substrato, de estrume, de sólidos totais (ST) ou sólidos voláteis), os números mais prováveis de coliformes totais e fecais, e a composição do biogás. As reduções de SV foram de 38; 34; 33 e 39% para o verão, outono, inverno e primavera, respectivamente. Os totais de biogás produzidos foram de 1,06 m³ no verão, 0,88 m³ no outono, 0,88 m³ no inverno e 0,99 m³ na primavera, e os potenciais de produção médios foram de 0,02 m³ de biogás/kg de substrato e 0,2 m³ de biogás/kg de estrume para todas as estações. As reduções médias de coliformes totais e fecais foram de 99,99% em todas as estações, e os teores máximos de CH4 no biogás foram 88,3; 84,6; 80,6 e 79,2%, para o verão, outono, inverno e primavera, respectivamente.
Resumo:
Estudos foram desenvolvidos para dimensionar e adaptar o injetor do queimador principal de um aquecedor de água tipo acumulação de 75 L. O diâmetro do injetor foi redimensionado em função da pressão de serviço de 100 mm H2O e poder calorífico inferior do biogás de 21.600 kJ m-3 n, garantindo a manutenção da potência calorífica do equipamento de 20.900 kJ h-1. Os resultados demonstraram que o queimador adaptado operou com biogás adequadamente, com chama estável. A eficiência média do aquecedor foi de 68%, para ganho térmico de 36,7 ºC, correspondendo à temperatura final da água igual a 62,7 ºC, sendo consumido 0,796 m³n de biogás, aquecendo 75 L de água em 72 minutos.
Resumo:
Com a finalidade de se analisar quali/quantitativamente o biogás produzido por 6 tipos de substratos, efetuou-se a presente pesquisa no DER/FCAV/UNESP- SP, Brasil. Os substratos utilizados na digestão anaeróbia foram caracterizados como: 1- Esterco de aves de postura (EAP); 2- Esterco de aves de postura triturado (EAPT); 3- Esterco de aves de corte com cama de maravalha (EACM); 4- Esterco de aves de corte com cama de maravalha triturado (EACMT); 5- Esterco de aves de corte com cama de casca de amendoim (EACA), e 6- Esterco de aves de corte com cama de casca de amendoim triturado (EACAT). Dos resultados obtidos, concluiu-se que, em relação à produção acumulada de biogás, o substrato EAPT foi superior aos demais, enquanto EACM apresentou produção acumulada inferior. em geral, os substratos triturados apresentaram maior quantidade de biogás acumulado em relação aos não triturados, exceto o EACAT, com 20,9 m³ inferior ao EACA. O período de produção máxima de biogás teve início entre 45 e 60 dias, começando a decair a partir dos 120 dias. Aos 57 dias após o enchimento dos biodigestores, o gás produzido possuía teores de CH4 superiores a 53%, e a partir dos 99 dias, todos produziram biogás com teores de CH4 superiores a 70%. Os substratos EAP e EAPT apresentaram maiores concentrações de metano no biogás.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work intends to analyze the behavior of the gas flow of plunger lift wells producing to well testing separators in offshore production platforms to aim a technical procedure to estimate the gas flow during the slug production period. The motivation for this work appeared from the expectation of some wells equipped with plunger lift method by PETROBRAS in Ubarana sea field located at Rio Grande do Norte State coast where the produced fluids measurement is made in well testing separators at the platform. The oil artificial lift method called plunger lift is used when the available energy of the reservoir is not high enough to overcome all the necessary load losses to lift the oil from the bottom of the well to the surface continuously. This method consists, basically, in one free piston acting as a mechanical interface between the formation gas and the produced liquids, greatly increasing the well s lifting efficiency. A pneumatic control valve is mounted at the flow line to control the cycles. When this valve opens, the plunger starts to move from the bottom to the surface of the well lifting all the oil and gas that are above it until to reach the well test separator where the fluids are measured. The well test separator is used to measure all the volumes produced by the well during a certain period of time called production test. In most cases, the separators are designed to measure stabilized flow, in other words, reasonably constant flow by the use of level and pressure electronic controllers (PLC) and by assumption of a steady pressure inside the separator. With plunger lift wells the liquid and gas flow at the surface are cyclical and unstable what causes the appearance of slugs inside the separator, mainly in the gas phase, because introduce significant errors in the measurement system (e.g.: overrange error). The flow gas analysis proposed in this work is based on two mathematical models used together: i) a plunger lift well model proposed by Baruzzi [1] with later modifications made by Bolonhini [2] to built a plunger lift simulator; ii) a two-phase separator model (gas + liquid) based from a three-phase separator model (gas + oil + water) proposed by Nunes [3]. Based on the models above and with field data collected from the well test separator of PUB-02 platform (Ubarana sea field) it was possible to demonstrate that the output gas flow of the separator can be estimate, with a reasonable precision, from the control signal of the Pressure Control Valve (PCV). Several models of the System Identification Toolbox from MATLAB® were analyzed to evaluate which one better fit to the data collected from the field. For validation of the models, it was used the AIC criterion, as well as a variant of the cross validation criterion. The ARX model performance was the best one to fit to the data and, this way, we decided to evaluate a recursive algorithm (RARX) also with real time data. The results were quite promising that indicating the viability to estimate the output gas flow rate from a plunger lift well producing to a well test separator, with the built-in information of the control signal to the PCV
Resumo:
A produção de biogás por meio de biodigestão anaeróbia representa um avanço para equacionar o problema dos dejetos produzidos pela suinocultura e disponibilidade de energia no meio rural. Este trabalho teve como objetivo estimar a viabilidade econômica de um sistema biointegrado para geração de eletricidade a partir do aproveitamento de dejetos de suínos. Os dados para este estudo foram coletados em uma agroindústria, onde são realizadas diversas atividades agrícolas; entretanto, a suinocultura foi selecionada para o processo de análise de biodigestão anaeróbia, pelo fato de gerar uma grande quantidade de dejetos, com dificuldade de disposição no meio ambiente, configurando um estudo de caso. O biodigestor analisado é um modelo tubular contínuo, com calha de água em alvenaria e com uma manta plástica como gasômetro, onde são depositados diariamente os dejetos de 2.300 suínos em fase de terminação. O investimento inicial para implantação foi estimado em R$ 51.537,17, e os custos anuais do sistema foram de R$ 5.708,20 com manutenção, R$ 4.390,40 com depreciação e R$ 1.366,77 com juros. Concluiu-se que o sistema de produção de biogás é viável do ponto de vista econômico, se o consumo de energia elétrica for de 35 kWh por dia, em média, onde o valor presente líquido (VLP) é de R$ 9.494,90, e a taxa interna de retorno (TIR) é de 9,34% ao ano.
Resumo:
Cells of Mikania glomerata, Cephaelis ipecacuanha and Maytenus aquifolia were co-cultured in a two-phase system using filter paper as a solid support. The species were co-cultured in all possible paired combinations. Interaction between Mikania and Maytenus cells resulted in increased biomass production of Maytenus cells, but the friedelin content was reduced. Co-cultivation of Cephaelis and Mikania cells enhanced coumarin content, but inhibited the growth of Mikania cells. However, yield of emetine as well as Cephaelis biomass accumulation were positively stimulated by the co-cultivation. Results indicate a possible occurrence of allelopathy in such a system.
Resumo:
Although the good performance in organic matter and suspended solids removal, the anaerobic reactors are unable to remove ammonia nitrogen from sewage, which makes indispensable to include a step of post-treatment for removal of ammonia or nitrate as necessary. This paper presents the performance of a new variant technology, where the nitrification unit, preceded by anaerobic units, is a submerged aerated biological filter, without continuous sludge discharge in their daily operation. The oxygenation system is very simple and inexpensive, consisting of perforated hoses and compressors. The anaerobic reactors are a septic tank with two chambers followed (8.82 m³) and two parallel anaerobic filters (36 m³ each) filled with ceramic bricks and conics plastic parts. Both followed aerated filters were filled with cut corrugated conduit. The study evaluated the behavior of the system with constant domestic sewage flow (10 m³/d) and different aeration conditions, are these: stage 01, when applied air flow of 0.01 m³ air/min in both aerated filter; stage 02, remained in the initial air flow rate in the second aerated filter and increased at the first to 0.05 m³ air/min; at last, at last, in stage 03, the air flow rate of first aerated filter was 0.10 m³ air/min and on the second remained at 0.01 m³ air/min. The filter FA1 received load of 0.41 kg COD/m³.d, 0.37 kg COD/m³.d and 0.26 kg COD/m³.d on phases 01, 02 and 03, respectively. The FA2 received loads of 0.25 kg COD/m³.d, 0.18 kg COD/m³.d and 0.14 kg COD/m³.d on phases 01, 02 and 03, respectively. During stage 01, were found the following results: 98% removals of BODtotal and 92% of CODtotal, with effluent presenting 9 mg/L of BODtotal final average and 53 mg/L of CODtotal average; suspended solids removals of 93%, with a mean concentration of 10 mg/L in the final effluent; 47% reduction of ammonia of FA2 to FAN 's, presenting average of 28 mg NNH3/ L of ammonia in the effluent with; the dissolved oxygen levels always remained around 2.0 mg/L. During stage 02, were found removals of 97% and 95% to BODtotal and suspended solids, respectively, with average final concentrations of 8 and 7 mg/L, respectively; was removed 60% of ammonia, whose final concentration was 16.3 mg NNH3/ L, and nitrate was increased to a final average concentration of 16.55 mg N-NO3/L. Finally, the stage 03 provided 6 mg/L of DBOtotal (98% removal) and 23 mg/L of CODtotal (95% removal) of final effluent concentrations average. At this stage was identified the higher ammonia oxidation (86%), with final effluent showing average concentration of 6.1 mg N-NH3/L, reaching a minimum of 1.70 mg N-NH3/L. In some moments, during stage 03, there was a moderate denitrification process in the last aerated filter. The average turbidity in the effluent showed around 1.5 NTU, proving the good biomass physical stability. Therefore, the results demonstrate the submerged biological filters potential, filled with high void ratio material (98%), and aerated with hoses and compressor adoption, in the carbonaceous and nitrogenous matter oxidation, also generating an effluent with low concentration of solids
Resumo:
Ti-6Al-4V alloy is one of the most frequently used Ti alloys with diverse applications in aerospace and biomedical areas due to its favorable mechanical properties, corrosion resistance and biocompatibility. Meanwhile, its surface can stiffer intense corrosion caused by wear processes due to its poor tribological properties. Thus in the present study, PIII processing of Ti-6Al-4V alloy was carried out to evaluate its corrosion resistance in 3.5% NaCl solution. Two different sets of Ti-6Al-4V samples were PIII treated, varying the plasma gases and the treatment time. The corrosion behavior is correlated with the surface morphology, and the nitrogen content. SEM micrographs of the untreated sample reveal a typical two-phase structure. PIII processing promotes surface sputtering and the surface morphology is completely different for samples treated with N-2/H-2 mixture and N-2 only. The highest penetration of nitrogen (similar to 88 nm), corresponding to 33% of N-2 was obtained for the sample treated with N-2/H-2 mixture for 1:30 h. The corrosion behavior of the samples was investigated by a potentiodynamic polarization method. A large passive region of the polarization curves (similar to 1.5 V), associated with the formation of a protective film, was observed for all samples. The passive current density (similar to 3 x 10(-6) A cm(-2)) of the PIII-treated Ti-6Al-4V samples is about 10 times higher than for the untreated sample. This current value is still rather low and maintains good corrosion resistance. The anodic branches of the polarization curves for all treated Ti-6Al-4V samples demonstrate also that the oxide films break down at approximately 1.6 V, forming an active region. Although the sample treated by N-2/H-2 mixture for 1.30 It has thicker nitrogen enriched layer, better corrosion resistance is obtained for the PIII process performed with N, gas only. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper a non-isothermal two-phase model for oil-R134a refrigerant mixture flow is presented to predict the R134a leakage through the radial clearance of rolling piston compressors. The flow is divided in a liquid single-phase region and in a two-phase region, in which the homogeneous model is used to simulate the flow. The refrigerant leakage is determined using the mixture mass flow rate and the refrigerant mass fraction variation along the flow. The results are obtained for inlet pressures varying from 200 to 700 kPa, inlet temperatures ranging from 40 to 60 degrees C, and minimal clearances between 10 and 60 mu m. The results are firstly compared to existing isothermal model data, showing that there is a significant difference between the leakage flow rates predicted by isothermal and non-isothermal models. Finally, a useful general equation for compressor designers is proposed to calculate the refrigerant leakage for a large range of operation conditions. (C) 2012 Elsevier Ltd and IIR. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Leather tanneries generate effluents with high content of heavy metals, especially chromium, which is used in the mineral tanning process. Microemulsions have been studied in the extraction of heavy metals from aqueous solutions. Considering the problems related with the sediment resulting from the tanning process, due to its high content in chromium, in this work this sediment was characterized and microemulsion systems were applied for chromium removal. The extraction process consists in the removal of heavy metal ions present in an aqueous feeding solution (acid digestion solution) by a microemulsion system. First three different solid sludge digestion methods were evaluated, being chosen the method with higher digestion capacity. For this digestion method, seeking its optimization, was evaluated the influence of granule size, temperature and digestion time. Experimental results showed that the method proposed by USEPA (Method A) was the most efficient one, being obtained 95.77% of sample digestion. Regarding to the evaluated parameters, the best results were achieved at 95°C, 14 Mesh granule size, and 60 minutes digestion time. For chromium removal, three microemulsion extraction methods were evaluated: Method 1, in a Winsor II region, using as aqueous phase the acid digestion solution; Method 2, in a Winsor IV region, being obtained by the addition of the acid digestion solution to a microemulsion phase, whose aqueous phase is distilled water, until the formation of Winsor II system; and Method 3, in a Winsor III region, consisting in the formation of a Winsor III region using as aqueous phase the acid digestion solution, diluted in NaOH 0.01N. Seeking to optimize the extraction process only Method 1 (Systems I, II, and VIII) and Method 2 (System IX) were evaluated, being chosen points inside the interest regions (studied domains) to study the influence of contact time and pH in the extraction percentiles. The studied systems present the following compositions: System I: Surfactant Saponified coconut oil, Cosurfactant 1-Butanol, Oil phase Kerosene, Aqueous phase 2% NaCl solution; System II: Aqueous phase Acid digestion solution with pH adjusted using KOH (pH 3.5); System VIII: Aqueous phase - Acid digestion solution (pH 0.06); and System IX Aqueous phase Distilled water (pH 10.24), the other phases of Systems II, VIII and IX are similar to System I. Method 2 showed to be the more efficient one regarding chromium extraction percentile (up to 96.59% - pH 3.5). Considering that with Method 2 the microemulsion region only appears in the Winsor II region, it was studied Method 3 (System X) for the evaluation and characterization of a triphasic system, seeking to compare with a biphases system. System X is composed by: Surfactant Saponified coconut oil, Cosurfactant 1-Butanol, Oil phase Kerosene, Aqueous phase Acid digestion solution diluted with water and with its pH adjusted using 0.01N NaOH solution. The biphasic and triphasic microemulsion systems were analyzed regarding its viscosity, extraction efficiency and drop effective diameter. The experimental results showed that for viscosity studies the obtained values were low for all studied systems, the diameter of the drop is smaller in the Winsor II region, with 15.5 nm, reaching 46.0 nm in Winsor III region, being this difference attributed to variations in system compositions and micelle geometry. In chromium extraction, these points showed similar results, being achieved 99.76% for Winsor II system and 99.62% for Winsor III system. Winsor III system showed to be more efficient due to the obtaining of a icroemulsion with smaller volume, with the possibility to recover the oil phase in excess, and the use of a smaller proportion of surfactant and cosurfactant (C/S)