936 resultados para Two-Dimensional Search Problem
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Global competitiveness has been increased significantly in the last decade and, as consequence, companies are always looking for developing better processes in supply chain operations in order to maintain their competitive costs and keep themselves in the business. Logistics operations represent a large part of the product's final cost. Transportation can represent more than fifty percent of final cost sometimes. The solutions for cutting and packing problems consist in simple and low investment actions, as enhancing the arrangement of the transported load in order to decrease both material and room wastes. As per the presented reasons, the objective of this paper is to show and analyze a real application of a mathematical model to solve a manufacturer pallet-loading problem, comparing results from the model execution and the solution proposed by the company studied. This study will not only find the best arrangement to load pallets (which will optimize storage and transportation process), but also to check the effectiveness of existing modeling in the literature. For this study a computational package was used, which consists of a modeling language GAMS with the CPLEX optimization solver and two other existing software in the market, all of them indicating that an accurate mathematical model for solving this kind of problem in a two-dimensional approach is difficult to be found, in addition to a long execution time. However, the study and the software utilization indicate that the problem would be easily solved by heuristics in a shorter execution time
Resumo:
The spread of infectious disease among and between wild and domesticated animals has become a major problem worldwide. Upon analyzing the dynamics of wildlife growth and infection when the diseased animals cannot be identified separately from healthy wildlife prior to the kill, we find that harvest-based strategies alone have no impact on disease transmission. Other controls that directly influence disease transmission and/or mortality are required. Next, we analyze the socially optimal management of infectious wildlife. The model is applied to the problem of bovine tuberculosis among Michigan white-tailed deer, with non-selective harvests and supplemental feeding being the control variables. Using a two-state linear control model, we find a two-dimensional singular path is optimal (as opposed to a more conventional bang-bang solution) as part of a cycle that results in the disease remaining endemic in the wildlife. This result follows from non-selective harvesting and intermittent wildlife productivity gains from supplemental feeding.
Resumo:
Global competitiveness has been increased significantly in the last decade and, as consequence, companies are always looking for developing better processes in supply chain operations in order to maintain their competitive costs and keep themselves in the business. Logistics operations represent a large part of the product's final cost. Transportation can represent more than fifty percent of final cost sometimes. The solutions for cutting and packing problems consist in simple and low investment actions, as enhancing the arrangement of the transported load in order to decrease both material and room wastes. As per the presented reasons, the objective of this paper is to show and analyze a real application of a mathematical model to solve a manufacturer pallet-loading problem, comparing results from the model execution and the solution proposed by the company studied. This study will not only find the best arrangement to load pallets (which will optimize storage and transportation process), but also to check the effectiveness of existing modeling in the literature. For this study a computational package was used, which consists of a modeling language GAMS with the CPLEX optimization solver and two other existing software in the market, all of them indicating that an accurate mathematical model for solving this kind of problem in a two-dimensional approach is difficult to be found, in addition to a long execution time. However, the study and the software utilization indicate that the problem would be easily solved by heuristics in a shorter execution time
Resumo:
We consider a solution of three dimensional New Massive Gravity with a negative cosmological constant and use the AdS/CTF correspondence to inquire about the equivalent two dimensional model at the boundary. We conclude that there should be a close relation of the theory with the Korteweg-de Vries equation. (C) 2012 Elsevier B.V..All rights reserved.
Resumo:
Purpose - The purpose of this paper is to develop an efficient numerical algorithm for the self-consistent solution of Schrodinger and Poisson equations in one-dimensional systems. The goal is to compute the charge-control and capacitance-voltage characteristics of quantum wire transistors. Design/methodology/approach - The paper presents a numerical formulation employing a non-uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrodinger equation through the split-operator method while a relaxation method in the FTCS scheme ("Forward Time Centered Space") is used to solve the two-dimensional Poisson equation. Findings - The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge-control characteristics and the capacitance-voltage relationship for a split-gate quantum wire device. Originality/value - The paper helps to fulfill the need for C-V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two-dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one-dimensional quantization case, significantly diminishing running time.
Resumo:
Cogo K, de Andrade A, Labate CA, Bergamaschi CC, Berto LA, Franco GCN, Goncalves RB, Groppo FC. Proteomic analysis of Porphyromonas gingivalis exposed to nicotine and cotinine. J Periodont Res 2012; 47: 766775. (c) 2012 John Wiley & Sons A/S Background and Objective: Smokers are more predisposed than nonsmokers to infection with Porphyromonas gingivalis, one of the most important pathogens involved in the onset and development of periodontitis. It has also been observed that tobacco, and tobacco derivatives such as nicotine and cotinine, can induce modifications to P. gingivalis virulence. However, the effect of the major compounds derived from cigarettes on expression of protein by P.gingivalis is poorly understood. Therefore, this study aimed to evaluate and compare the effects of nicotine and cotinine on the P.gingivalis proteomic profile. Material and Methods: Total proteins of P gingivalis exposed to nicotine and cotinine were extracted and separated by two-dimensional electrophoresis. Proteins differentially expressed were successfully identified through liquid chromatography-mass spectrometry and primary sequence databases using MASCOT search engine, and gene ontology was carried out using DAVID tools. Results: Of the approximately 410 protein spots that were reproducibly detected on each gel, 23 were differentially expressed in at least one of the treatments. A particular increase was seen in proteins involved in metabolism, virulence and acquisition of peptides, protein synthesis and folding, transcription and oxidative stress. Few proteins showed significant decreases in expression; those that did are involved in cell envelope biosynthesis and proteolysis and also in metabolism. Conclusion: Our results characterized the changes in the proteome of P.gingivalis following exposure to nicotine and cotinine, suggesting that these substances may modulate, with minor changes, protein expression. The present study is, in part, a step toward understanding the potential smokepathogen interaction that may occur in smokers with periodontitis.
Resumo:
We present two-dimensional (2D) two-particle angular correlations measured with the STAR detector on relative pseudorapidity eta and azimuth phi for charged particles from Au-Au collisions at root s(NN) = 62 and 200 GeV with transverse momentum p(t) >= 0.15 GeV/c, vertical bar eta vertical bar <= 1, and 2 pi in azimuth. Observed correlations include a same-side (relative azimuth <pi/2) 2D peak, a closely related away-side azimuth dipole, and an azimuth quadrupole conventionally associated with elliptic flow. The same-side 2D peak and away-side dipole are explained by semihard parton scattering and fragmentation (minijets) in proton-proton and peripheral nucleus-nucleus collisions. Those structures follow N-N binary-collision scaling in Au-Au collisions until midcentrality, where a transition to a qualitatively different centrality trend occurs within one 10% centrality bin. Above the transition point the number of same-side and away-side correlated pairs increases rapidly relative to binary-collision scaling, the eta width of the same-side 2D peak also increases rapidly (eta elongation), and the phi width actually decreases significantly. Those centrality trends are in marked contrast with conventional expectations for jet quenching in a dense medium. The observed centrality trends are compared to perturbative QCD predictions computed in HIJING, which serve as a theoretical baseline, and to the expected trends for semihard parton scattering and fragmentation in a thermalized opaque medium predicted by theoretical calculations and phenomenological models. We are unable to reconcile a semihard parton scattering and fragmentation origin for the observed correlation structure and centrality trends with heavy-ion collision scenarios that invoke rapid parton thermalization. If the collision system turns out to be effectively opaque to few-GeV partons the present observations would be inconsistent with the minijet picture discussed here. DOI: 10.1103/PhysRevC.86.064902
Resumo:
Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. Energy harvesting devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The design of energy harvesting devices is not obvious, requiring optimization procedures. This paper investigates the influence of pattern gradation using topology optimization on the design of piezocomposite energy harvesting devices based on bending behavior. The objective function consists of maximizing the electric power generated in a load resistor. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. Examples of two-dimensional piezocomposite energy harvesting devices are presented and discussed using the proposed method. The numerical results illustrate that pattern gradation constraints help to increase the electric power generated in a load resistor and guides the problem toward a more stable solution. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The flow around circular smooth fixed cylinder in a large range of Reynolds numbers is considered in this paper. In order to investigate this canonical case, we perform CFD calculations and apply verification & validation (V&V) procedures to draw conclusions regarding numerical error and, afterwards, assess the modeling errors and capabilities of this (U)RANS method to solve the problem. Eight Reynolds numbers between Re = 10 and Re 5 x 10(5) will be presented with, at least, four geometrically similar grids and five discretization in time for each case (when unsteady), together with strict control of iterative and round-off errors, allowing a consistent verification analysis with uncertainty estimation. Two-dimensional RANS, steady or unsteady, laminar or turbulent calculations are performed. The original 1994 k - omega SST turbulence model by Menter is used to model turbulence. The validation procedure is performed by comparing the numerical results with an extensive set of experimental results compiled from the literature. [DOI: 10.1115/1.4007571]
Resumo:
The present work propounds an inverse method to estimate the heat sources in the transient two-dimensional heat conduction problem in a rectangular domain with convective bounders. The non homogeneous partial differential equation (PDE) is solved using the Integral Transform Method. The test function for the heat generation term is obtained by the chip geometry and thermomechanical cutting. Then the heat generation term is estimated by the conjugated gradient method (CGM) with adjoint problem for parameter estimation. The experimental trials were organized to perform six different conditions to provide heat sources of different intensities. This method was compared with others in the literature and advantages are discussed. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.