884 resultados para Turboalbero MatLab Simulink modello dinamico mappe prestazionali turbina Allison
Resumo:
El uso de las turbinas de gas en ciclo combinado es una de las alternativas más aceptadas en los últimos tiempos. Existen muchas razones por las que se está investigando sobre la posibilidad de usar otro tipo de combustibles como alternativa al característico, gas natural (metano). Entre otras, se pueden citar: la evolución del precio y la disponibilidad en una zona de algún tipo de gas de síntesis [17] así como estrategias medioambientales y de emisiones [10], [18], [20]. En la bibliografía se encuentran estudios, en los que de forma rigurosa se establece la relación entre la eficiencia de una instalación, usando balances característicos del Segundo Principio de la Termodinámica, y aspectos muy diversos como análisis de los gases de combustión [14], posibilidad de recalentamiento de los gases [19], temperaturas de gasificación [23] y temperatura de llama [18] etc. Estos estudios siempre toman como combustible el metano. En este estudio se presenta un análisis de las emisiones de CO2 (toneladas emitidas) por energía eléctrica producida (MWh) en la instalación de turbina de gas en ciclo combinado usando como combustible los primeros elementos de los hidrocarburos alcanos desde el metano, que se toma como referencia, hasta el heptano. Esto permite la determinación de las emisiones para distintos combustibles con distintas composiciones. Como parámetros relacionados directamente con la eficiencia de la instalación, se han contemplado para cada combustible diferentes temperaturas de entrada a la turbina de gas y distintas relaciones de compresión. Finalmente se obtienen una serie de curvas que relacionan la eficiencia y las emisiones con el número de carbonos presentes en el combustible. El análisis realizado pretende ser un elemento de discusión, basado en aspectos puramente termodinámicos, para la toma de decisiones
Resumo:
Matlab, uno de los paquetes de software matemático más utilizados actualmente en el mundo de la docencia y de la investigación, dispone de entre sus muchas herramientas una específica para el procesado digital de imágenes. Esta toolbox de procesado digital de imágenes está formada por un conjunto de funciones adicionales que amplían la capacidad del entorno numérico de Matlab y permiten realizar un gran número de operaciones de procesado digital de imágenes directamente a través del programa principal. Sin embargo, pese a que MATLAB cuenta con un buen apartado de ayuda tanto online como dentro del propio programa principal, la bibliografía disponible en castellano es muy limitada y en el caso particular de la toolbox de procesado digital de imágenes es prácticamente nula y altamente especializada, lo que requiere que los usuarios tengan una sólida formación en matemáticas y en procesado digital de imágenes. Partiendo de una labor de análisis de todas las funciones y posibilidades disponibles en la herramienta del programa, el proyecto clasificará, resumirá y explicará cada una de ellas a nivel de usuario, definiendo todas las variables de entrada y salida posibles, describiendo las tareas más habituales en las que se emplea cada función, comparando resultados y proporcionando ejemplos aclaratorios que ayuden a entender su uso y aplicación. Además, se introducirá al lector en el uso general de Matlab explicando las operaciones esenciales del programa, y se aclararán los conceptos más avanzados de la toolbox para que no sea necesaria una extensa formación previa. De este modo, cualquier alumno o profesor que se quiera iniciar en el procesado digital de imágenes con Matlab dispondrá de un documento que le servirá tanto para consultar y entender el funcionamiento de cualquier función de la toolbox como para implementar las operaciones más recurrentes dentro del procesado digital de imágenes. Matlab, one of the most used numerical computing environments in the world of research and teaching, has among its many tools a specific one for digital image processing. This digital image processing toolbox consists of a set of additional functions that extend the power of the digital environment of Matlab and allow to execute a large number of operations of digital image processing directly through the main program. However, despite the fact that MATLAB has a good help section both online and within the main program, the available bibliography is very limited in Castilian and is negligible and highly specialized in the particular case of the image processing toolbox, being necessary a strong background in mathematics and digital image processing. Starting from an analysis of all the available functions and possibilities in the program tool, the document will classify, summarize and explain each function at user level, defining all input and output variables possible, describing common tasks in which each feature is used, comparing results and providing illustrative examples to help understand its use and application. In addition, the reader will be introduced in the general use of Matlab explaining the essential operations within the program and clarifying the most advanced concepts of the toolbox so that an extensive prior formation will not be necessary. Thus, any student or teacher who wants to start digital image processing with Matlab will have a document that will serve to check and understand the operation of any function of the toolbox and also to implement the most recurrent operations in digital image processing.
Resumo:
Este Proyecto Fin de Carrera trata sobre el reconocimiento e identificación de caracteres de matrículas de automóviles. Este tipo de sistemas de reconocimiento también se los conoce mundialmente como sistemas ANPR ("Automatic Number Plate Recognition") o LPR ("License Plate Recognition"). La gran cantidad de vehículos y logística que se mueve cada segundo por todo el planeta, hace necesaria su registro para su tratamiento y control. Por ello, es necesario implementar un sistema que pueda identificar correctamente estos recursos, para su posterior procesado, construyendo así una herramienta útil, ágil y dinámica. El presente trabajo ha sido estructurado en varias partes. La primera de ellas nos muestra los objetivos y las motivaciones que se persiguen con la realización de este proyecto. En la segunda, se abordan y desarrollan todos los diferentes procesos teóricos y técnicos, así como matemáticos, que forman un sistema ANPR común, con el fin de implementar una aplicación práctica que pueda demostrar la utilidad de estos en cualquier situación. En la tercera, se desarrolla esa parte práctica en la que se apoya la base teórica del trabajo. En ésta se describen y desarrollan los diversos algoritmos, creados con el fin de estudiar y comprobar todo lo planteado hasta ahora, así como observar su comportamiento. Se implementan varios procesos característicos del reconocimiento de caracteres y patrones, como la detección de áreas o patrones, rotado y transformación de imágenes, procesos de detección de bordes, segmentación de caracteres y patrones, umbralización y normalización, extracción de características y patrones, redes neuronales, y finalmente el reconocimiento óptico de caracteres o comúnmente conocido como OCR. La última parte refleja los resultados obtenidos a partir del sistema de reconocimiento de caracteres implementado para el trabajo y se exponen las conclusiones extraídas a partir de éste. Finalmente se plantean las líneas futuras de mejora, desarrollo e investigación, para poder realizar un sistema más eficiente y global. This Thesis deals about license plate characters recognition and identification. These kinds of systems are also known worldwide as ANPR systems ("Automatic Number Plate Recognition") or LPR ("License Plate Recognition"). The great number of vehicles and logistics moving every second all over the world, requires a registration for treatment and control. Thereby, it’s therefore necessary to implement a system that can identify correctly these resources, for further processing, thus building a useful, flexible and dynamic tool. This work has been structured into several parts. The first one shows the objectives and motivations attained by the completion of this project. In the second part, it’s developed all the different theoretical and technical processes, forming a common ANPR system in order to implement a practical application that can demonstrate the usefulness of these ones on any situation. In the third, the practical part is developed, which is based on the theoretical work. In this one are described and developed various algorithms, created to study and verify all the questions until now suggested, and complain the behavior of these systems. Several recognition of characters and patterns characteristic processes are implemented, such as areas or patterns detection, image rotation and transformation, edge detection processes, patterns and character segmentation, thresholding and normalization, features and patterns extraction, neural networks, and finally the optical character recognition or commonly known like OCR. The last part shows the results obtained from the character recognition system implemented for this thesis and the outlines conclusions drawn from it. Finally, future lines of improvement, research and development are proposed, in order to make a more efficient and comprehensive system.
Resumo:
El audio multicanal ha avanzado a pasos agigantados en los últimos años, y no solo en las técnicas de reproducción, sino que en las de capitación también. Por eso en este proyecto se encuentran ambas cosas: un array microfónico, EigenMike32 de MH Acoustics, y un sistema de reproducción con tecnología Wave Field Synthesis, instalado Iosono en la Jade Höchscule Oldenburg. Para enlazar estos dos puntos de la cadena de audio se proponen dos tipos distintos de codificación: la reproducción de la toma horizontal del EigenMike32; y el 3er orden de Ambisonics (High Order Ambisonics, HOA), una técnica de codificación basada en Armónicos Esféricos mediante la cual se simula el campo acústico en vez de simular las distintas fuentes. Ambas se desarrollaron en el entorno Matlab y apoyadas por la colección de scripts de Isophonics llamada Spatial Audio Matlab Toolbox. Para probar éstas se llevaron a cabo una serie de test en los que se las comparó con las grabaciones realizadas a la vez con un Dummy Head, a la que se supone el método más aproximado a nuestro modo de escucha. Estas pruebas incluían otras grabaciones hechas con un Doble MS de Schoeps que se explican en el proyecto “Sally”. La forma de realizar éstas fue, una batería de 4 audios repetida 4 veces para cada una de las situaciones garbadas (una conversación, una clase, una calle y un comedor universitario). Los resultados fueron inesperados, ya que la codificación del tercer orden de HOA quedo por debajo de la valoración Buena, posiblemente debido a la introducción de material hecho para un array tridimensional dentro de uno de 2 dimensiones. Por el otro lado, la codificación que consistía en extraer los micrófonos del plano horizontal se mantuvo en el nivel de Buena en todas las situaciones. Se concluye que HOA debe seguir siendo probado con mayores conocimientos sobre Armónicos Esféricos; mientras que el otro codificador, mucho más sencillo, puede ser usado para situaciones sin mucha complejidad en cuanto a espacialidad. In the last years the multichannel audio has increased in leaps and bounds and not only in the playback techniques, but also in the recording ones. That is the reason of both things being in this project: a microphone array, EigenMike32 from MH Acoustics; and a playback system with Wave Field Synthesis technology, installed by Iosono in Jade Höchscule Oldenburg. To link these two points of the audio chain, 2 different kinds of codification are proposed: the reproduction of the EigenMike32´s horizontal take, and the Ambisonics´ third order (High Order Ambisonics, HOA), a codification technique based in Spherical Harmonics through which the acoustic field is simulated instead of the different sound sources. Both have been developed inside Matlab´s environment and supported by the Isophonics´ scripts collection called Spatial Audio Matlab Toolbox. To test these, a serial of tests were made in which they were compared with recordings made at the time by a Dummy Head, which is supposed to be the closest method to our hearing way. These tests included other recording and codifications made by a Double MS (DMS) from Schoeps which are explained in the project named “3D audio rendering through Ambisonics techniques: from multi-microphone recordings (DMS Schoeps) to a WFS system, through Matlab”. The way to perform the tests was, a collection made of 4 audios repeated 4 times for each recorded situation (a chat, a class, a street and college canteen or Mensa). The results were unexpected, because the HOA´s third order stood under the Well valuation, possibly caused by introducing material made for a tridimensional array inside one made only by 2 dimensions. On the other hand, the codification that consisted of extracting the horizontal plane microphones kept the Well valuation in all the situations. It is concluded that HOA should keep being tested with larger knowledge about Spherical Harmonics; while the other coder, quite simpler, can be used for situations without a lot of complexity with regards to spatiality.
Resumo:
Este trabajo presenta un estudio sobre el funcionamiento y aplicaciones de las células de combustible de membrana tipo PEM, o de intercambio de protones, alimentadas con hidrógeno puro y oxigeno obtenido de aire comprimido. Una vez evaluado el proceso de dichas células y las variables que intervienen en el mismo, como presión, humedad y temperatura, se presenta una variedad de métodos para la instrumentación de tales variables así como métodos y sistemas para la estabilidad y control de las mismas, en torno a los valores óptimos para una mayor eficacia en el proceso. Tomando como variable principal a controlar la temperatura del proceso, y exponiendo los valores concretos en torno a 80 grados centígrados entre los que debe situarse, es realizado un modelo del proceso de calentamiento y evolución de la temperatura en función de la potencia del calentador resistivo en el dominio de la frecuencia compleja, y a su vez implementado un sistema de medición mediante sensores termopar de tipo K de respuesta casi lineal. La señal medida por los sensores es amplificada de manera diferencial mediante amplificadores de instrumentación INA2126, y es desarrollado un algoritmo de corrección de error de unión fría (error producido por la inclusión de nuevos metales del conector en el efecto termopar). Son incluidos los datos de test referentes al sistema de medición de temperatura , incluyendo las desviaciones o error respecto a los valores ideales de medida. Para la adquisición de datos y implementación de algoritmos de control, es utilizado un PC con el software Labview de National Instruments, que permite una programación intuitiva, versátil y visual, y poder realizar interfaces de usuario gráficas simples. La conexión entre el hardware de instrumentación y control de la célula y el PC se realiza mediante un interface de adquisición de datos USB NI 6800 que cuenta con un amplio número de salidas y entradas analógicas. Una vez digitalizadas las muestras de la señal medida, y corregido el error de unión fría anteriormente apuntado, es implementado en dicho software un controlador de tipo PID ( proporcional-integral-derivativo) , que se presenta como uno de los métodos más adecuados por su simplicidad de programación y su eficacia para el control de este tipo de variables. Para la evaluación del comportamiento del sistema son expuestas simulaciones mediante el software Matlab y Simulink determinando por tanto las mejores estrategias para desarrollar el control PID, así como los posibles resultados del proceso. En cuanto al sistema de calentamiento de los fluidos, es empleado un elemento resistor calentador, cuya potencia es controlada mediante un circuito electrónico compuesto por un detector de cruce por cero de la onda AC de alimentación y un sistema formado por un elemento TRIAC y su circuito de accionamiento. De manera análoga se expone el sistema de instrumentación para la presión de los gases en el circuito, variable que oscila en valores próximos a 3 atmosferas, para ello es empleado un sensor de presión con salida en corriente mediante bucle 4-20 mA, y un convertidor simple corriente a tensión para la entrada al sistema de adquisición de datos. Consecuentemente se presenta el esquema y componentes necesarios para la canalización, calentamiento y humidificación de los gases empleados en el proceso así como la situación de los sensores y actuadores. Por último el trabajo expone la relación de algoritmos desarrollados y un apéndice con información relativa al software Labview. ABTRACT This document presents a study about the operation and applications of PEM fuel cells (Proton exchange membrane fuel cells), fed with pure hydrogen and oxygen obtained from compressed air. Having evaluated the process of these cells and the variables involved on it, such as pressure, humidity and temperature, there is a variety of methods for implementing their control and to set up them around optimal values for greater efficiency in the process. Taking as primary process variable the temperature, and exposing its correct values around 80 degrees centigrade, between which must be placed, is carried out a model of the heating process and the temperature evolution related with the resistive heater power on the complex frequency domain, and is implemented a measuring system with thermocouple sensor type K performing a almost linear response. The differential signal measured by the sensor is amplified through INA2126 instrumentation amplifiers, and is developed a cold junction error correction algorithm (error produced by the inclusion of additional metals of connectors on the thermocouple effect). Data from the test concerning the temperature measurement system are included , including deviations or error regarding the ideal values of measurement. For data acquisition and implementation of control algorithms, is used a PC with LabVIEW software from National Instruments, which makes programming intuitive, versatile, visual, and useful to perform simple user interfaces. The connection between the instrumentation and control hardware of the cell and the PC interface is via a USB data acquisition NI 6800 that has a large number of analog inputs and outputs. Once stored the samples of the measured signal, and correct the error noted above junction, is implemented a software controller PID (proportional-integral-derivative), which is presented as one of the best methods for their programming simplicity and effectiveness for the control of such variables. To evaluate the performance of the system are presented simulations using Matlab and Simulink software thereby determining the best strategies to develop PID control, and possible outcomes of the process. As fluid heating system, is employed a heater resistor element whose power is controlled by an electronic circuit comprising a zero crossing detector of the AC power wave and a system consisting of a Triac and its drive circuit. As made with temperature variable it is developed an instrumentation system for gas pressure in the circuit, variable ranging in values around 3 atmospheres, it is employed a pressure sensor with a current output via 4-20 mA loop, and a single current to voltage converter to adequate the input to the data acquisition system. Consequently is developed the scheme and components needed for circulation, heating and humidification of the gases used in the process as well as the location of sensors and actuators. Finally the document presents the list of algorithms and an appendix with information about Labview software.
Resumo:
En este proyecto se ha desarrollado un código de MATLAB para el procesamiento de imágenes tomográficas 3D, de muestras de asfalto de carreteras en Polonia. Estas imágenes en 3D han sido tomadas por un equipo de investigación de la Universidad Tecnológica de Lodz (LUT). El objetivo de este proyecto es crear una herramienta que se pueda utilizar para estudiar las diferentes muestras de asfalto 3D y pueda servir para estudiar las pruebas de estrés que experimentan las muestras en el laboratorio. Con el objetivo final de encontrar soluciones a la degradación sufrida en las carreteras de Polonia, debido a diferentes causas, como son las condiciones meteorológicas. La degradación de las carreteras es un tema que se ha investigado desde hace muchos años, debido a la fuerte degradación causada por diferentes factores como son climáticos, la falta de mantenimiento o el tráfico excesivo en algunos casos. Es en Polonia, donde estos tres factores hacen que la composición de muchas carreteras se degrade rápidamente, sobre todo debido a las condiciones meteorológicas sufridas a lo largo del año, con temperaturas que van desde 30° C en verano a -20° C en invierno. Esto hace que la composición de las carreteras sufra mucho y el asfalto se levante, lo que aumenta los costos de mantenimiento y los accidentes de carretera. Este proyecto parte de la base de investigación que se lleva a cabo en la LUT, tratando de mejorar el análisis de las muestras de asfalto, por lo que se realizarán las pruebas de estrés y encontrar soluciones para mejorar el asfalto en las carreteras polacas. Esto disminuiría notablemente el costo de mantenimiento. A pesar de no entrar en aspectos muy técnicos sobre el asfalto y su composición, se ha necesitado realizar un estudio profundo sobre todas sus características, para crear un código capaz de obtener los mejores resultados. Por estas razones, se ha desarrollado en Matlab, los algoritmos que permiten el estudio de los especímenes 3D de asfalto. Se ha utilizado este software, ya que Matlab es una poderosa herramienta matemática que permite operar con matrices para realización de operaciones rápidamente, permitiendo desarrollar un código específico para el tratamiento y procesamiento de imágenes en 3D. Gracias a esta herramienta, estos algoritmos realizan procesos tales como, la segmentación de la imagen 3D, pre y post procesamiento de la imagen, filtrado o todo tipo de análisis microestructural de las muestras de asfalto que se están estudiando. El código presentado para la segmentación de las muestras de asfalto 3D es menos complejo en su diseño y desarrollo, debido a las herramientas de procesamiento de imágenes que incluye Matlab, que facilitan significativamente la tarea de programación, así como el método de segmentación utilizado. Respecto al código, este ha sido diseñado teniendo en cuenta el objetivo de facilitar el trabajo de análisis y estudio de las imágenes en 3D de las muestras de asfalto. Por lo tanto, el principal objetivo es el de crear una herramienta para el estudio de este código, por ello fue desarrollado para que pueda ser integrado en un entorno visual, de manera que sea más fácil y simple su utilización. Ese es el motivo por el cual todos estos algoritmos y funciones, que ha sido desarrolladas, se integrarán en una herramienta visual que se ha desarrollado con el GUIDE de Matlab. Esta herramienta ha sido creada en colaboración con Jorge Vega, y fue desarrollada en su proyecto final de carrera, cuyo título es: Segmentación microestructural de Imágenes en 3D de la muestra de asfalto utilizando Matlab. En esta herramienta se ha utilizado todo las funciones programadas en este proyecto, y tiene el objetivo de desarrollar una herramienta que permita crear un entorno gráfico intuitivo y de fácil uso para el estudio de las muestras de 3D de asfalto. Este proyecto se ha dividido en 4 capítulos, en un primer lugar estará la introducción, donde se presentarán los aspectos más importante que se va a componer el proyecto. En el segundo capítulo se presentarán todos los datos técnicos que se han tenido que estudiar para desarrollar la herramienta, entre los que cabe los tres temas más importantes que se han estudiado en este proyecto: materiales asfálticos, los principios de la tomografías 3D y el procesamiento de imágenes. Esta será la base para el tercer capítulo, que expondrá la metodología utilizada en la elaboración del código, con la explicación del entorno de trabajo utilizado en Matlab y todas las funciones de procesamiento de imágenes utilizadas. Además, se muestra todo el código desarrollado, así como una descripción teórica de los métodos utilizados para el pre-procesamiento y segmentación de las imagenes en 3D. En el capítulo 4, se mostrarán los resultados obtenidos en el estudio de una de las muestras de asfalto, y, finalmente, el último capítulo se basa en las conclusiones sobre el desarrollo de este proyecto. En este proyecto se ha llevado han realizado todos los puntos que se establecieron como punto de partida en el anteproyecto para crear la herramienta, a pesar de que se ha dejado para futuros proyectos nuevas posibilidades de este codigo, como por ejemplo, la detección automática de las diferentes regiones de una muestra de asfalto debido a su composición. Como se muestra en este proyecto, las técnicas de procesamiento de imágenes se utilizan cada vez más en multitud áreas, como pueden ser industriales o médicas. En consecuencia, este tipo de proyecto tiene multitud de posibilidades, y pudiendo ser la base para muchas nuevas aplicaciones que se puedan desarrollar en un futuro. Por último, se concluye que este proyecto ha contribuido a fortalecer las habilidades de programación, ampliando el conocimiento de Matlab y de la teoría de procesamiento de imágenes. Del mismo modo, este trabajo proporciona una base para el desarrollo de un proyecto más amplio cuyo alcance será una herramienta que puedas ser utilizada por el equipo de investigación de la Universidad Tecnológica de Lodz y en futuros proyectos. ABSTRACT In this project has been developed one code in MATLAB to process X-ray tomographic 3D images of asphalt specimens. These images 3D has been taken by a research team of the Lodz University of Technology (LUT). The aim of this project is to create a tool that can be used to study differents asphalt specimen and can be used to study them after stress tests undergoing the samples. With the final goal to find solutions to the degradation suffered roads in Poland due to differents causes, like weather conditions. The degradation of the roads is an issue that has been investigated many years ago, due to strong degradation suffered caused by various factors such as climate, poor maintenance or excessive traffic in some cases. It is in Poland where these three factors make the composition of many roads degrade rapidly, especially due to the weather conditions suffered along the year, with temperatures ranging from 30 o C in summer to -20 ° C in winter. This causes the roads suffers a lot and asphalt rises shortly after putting, increasing maintenance costs and road accident. This project part of the base that research is taking place at the LUT, in order to better analyze the asphalt specimens, they are tested for stress and find solutions to improve the asphalt on Polish roads. This would decrease remarkable maintenance cost. Although this project will not go into the technical aspect as asphalt and composition, but it has been required a deep study about all of its features, to create a code able to obtain the best results. For these reasons, there have been developed in Matlab, algorithms that allow the study of 3D specimens of asphalt. Matlab is a powerful mathematical tool, which allows arrays operate fastly, allowing to develop specific code for the treatment and processing of 3D images. Thus, these algorithms perform processes such as the multidimensional matrix sgementation, pre and post processing with the same filtering algorithms or microstructural analysis of asphalt specimen which being studied. All these algorithms and function that has been developed to be integrated into a visual tool which it be developed with the GUIDE of Matlab. This tool has been created in the project of Jorge Vega which name is: Microstructural segmentation of 3D images of asphalt specimen using Matlab engine. In this tool it has been used all the functions programmed in this project, and it has the aim to develop an easy and intuitive graphical environment for the study of 3D samples of asphalt. This project has been divided into 4 chapters plus the introduction, the second chapter introduces the state-of-the-art of the three of the most important topics that have been studied in this project: asphalt materials, principle of X-ray tomography and image processing. This will be the base for the third chapter, which will outline the methodology used in developing the code, explaining the working environment of Matlab and all the functions of processing images used. In addition, it will be shown all the developed code created, as well as a theoretical description of the methods used for preprocessing and 3D image segmentation. In Chapter 4 is shown the results obtained from the study of one of the specimens of asphalt, and finally the last chapter draws the conclusions regarding the development of this project.