999 resultados para Tunable luminescence


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An oxygen indicator is described, comprising nanoparticles of titania dispersed in hydroxyethyl cellulose (HEC) polymer film containing a sacrificial electron donor, glycerol, and the redox indicator, indigo-tetrasulfonate (ITS). The indicator is blue-coloured in the absence of UV light, however upon exposure to UV light it not only loses its colour but also luminesces, unless and until it is exposed to oxygen, whereupon its original colour is restored. The initial photobleaching spectral ( absorbance and luminescence) response characteristics in air and in vacuum are described and discussed in terms of a simple reaction scheme involving UV activation of the titania photocatalyst particles, which are used to reduce the redox dye, ITS, to its leuco form, whilst simultaneously oxidising the glycerol to glyceraldehye. The response characteristics of the activated, that is, UV photobleached, form of the indicator to oxygen are also reported and the possible uses of such an indicator to measure ambient O-2 levels are discussed. Copyright (C) 2008 Andrew Mills et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ruthenium(II) diimine complexes, such as ruthenium(II) tris( bipyridyl), Ru(bpy)(3)(2+), possess highly luminescent excited states that are not only readily quenched by oxygen but also by an increase in temperature. The former effect can be rendered insignificant by encapsulating the complex in an oxygen impermeable polymer, although encapsulation often leads also to a loss of temperature sensitivity. The luminescence properties of Ru(bpy)(3)(2+) encapsulated in PVA were studied as a function of oxygen concentration and temperature and found to be independent of the former, but still very sensitive towards the latter. The results were fitted to an established Arrhenius-type equation, based on thermal quenching of the emitting state by a slightly higher (Delta E = 3100 cm(-1)) (3)d-d state that deactivates very rapidly (10(-13) s) via a non-radiative process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Details of the novel luminescence of the leuco forms of the thiazine dyes, methylene blue and thionine, are reported, including their emission maxima, quantum yields and lifetimes of the luminescence. Other work shows that this luminescence is independent of reducing agent type and solution pH and is a common feature of most thiazine dyes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different luminescent, hydrophillic ruthenium diimine cationic complexes are rendered soluble in the hydrophobic medium of a plasticised polymer through ion-pair coupling with a hydrophobic anion, such as tetraphenyl berate. Based on this approach, a number of different oxygen sensitive films, i.e., luminescent, thin plastic films which respond to oxygen-the latter quenches the luminescence were prepared, using the polymer, cellulose acetate, plasticised with tributylphosphate. Of the resultant thin oxygen sensitive films tested, the one containing the luminescent ion-pair ruthenium (II) tris(4,7-diphenyl-1,IO-phenanthroline) ditetraphenyl berate, [Ru(dpp)(3)(2+)(Ph4B-)(2)], was found to be the most sensitive, and its response characteristics were subsequently studied as a function of plasticiser content, temperature and stability in use, and with age. The major response characteristics, i.e., film sensitivity towards oxygen and response and recovery times, depend very strongly upon the overall level of plasticiser present in film; the film is more sensitive and faster in response and recovery the greater the level of plasticiser employed. Thus, the response of the film towards oxygen can be tuned by varying the level of plasticiser in the film. Film sensitivity towards oxygen is largely independent on temperature, whereas its response and recovery times decrease with increasing temperature (E-a = -10.3+/-0.4 kJ mol(-1)). The sensitivity of a typical luminescent film is very stable when used continuously over a 24-h period, decreases by ca. 20% with age when stored at ambient temperature over a period of 29 days, but very little over the same period of time when stored in the freezer section of a fridge. (C) 1997 Elsevier Science S.A.