942 resultados para Truth.
Resumo:
Wydział Teologiczny
Resumo:
One of the main, initial thesis of the article is that in the tragedies `Hρακλής μαινόμενος by Euripides and Hercules Furens by Seneca the main character falls into the madness twice. The first madness is sent by Hera/ Juno and is here defined, because of its origin, as a divine madness. The second one is so called human madness and Heracles/ Hercules is most probably overcome by it, after he has recognised, that he, driven by the involuntary fury, killed his own wife and sons. This state of the psyche of the hero is already independent from the deity and originates in such deeply human feelings like despair, anger, pain, shame. The strongly stirred hero plans to commit a suicide. According to the contemporary psychology this situation can be, because of some reasons analysed in the article, recognised as a symptom of irrationality. In the drama by Seneca Amfithryon, the father of the hero also defines the state of Hercules, who has become aware of the truth about his deeds, outright as furor. There is in the drama by Euripides, however, no reference to this second madness, which is connected with the somewhat different mentality that the drama originated in (the still kept in memory Homeric ethos and the attitudes towards the issues of honour, suicide etc. determined by it). Seneca as a stoic noticed and emphasized – although he generally also accepted the suicide – that Hercules, because of the anger, acts irrationally and, as a result, is in fact mentally unable to decide about his life and death. In the article is also presented in what an interesting way the above mentioned differences in the mentality of Euripides and Seneca manifest themselves in the case of the divine madness (among other things, the difference between Greek Lyssa and Roman Furor).
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
This paper attempts two tasks. First, it sketches how the natural sciences (including especially the biological sciences), the social sciences, and the scientific study of religion can be understood to furnish complementary, consonant perspectives on human beings and human groups. This suggests that it is possible to speak of a modern secular interpretation of humanity (MSIH) to which these perspectives contribute (though not without tensions). MSIH is not a comprehensive interpretation of human beings, if only because it adopts a posture of neutrality with regard to the reality of religious objects and the truth of theological claims about them. MSIH is certainly an impressively forceful interpretation, however, and it needs to be reckoned with by any perspective on human life that seeks to insert its truth claims into the arena of public debate. Second, the paper considers two challenges that MSIH poses to specifically theological interpretations of human beings. On the one hand, in spite of its posture of religious neutrality, MSIH is a key element in a class of wider, seemingly antireligious interpretations of humanity, including especially projectionist and illusionist critiques of religion. It is consonance with MSIH that makes these critiques such formidable competitors for traditional theological interpretations of human beings. On the other hand, and taking the religiously neutral posture of MSIH at face value, theological accounts of humanity that seek to coordinate the insights of MSIH with positive religious visions of human life must find ways to overcome or manage such dissonance as arises. The goal of synthesis is defended as important, and strategies for managing these challenges, especially in light of the pluralism of extant philosophical and theological interpretations of human beings, are advocated.
Resumo:
High intensity focused ultrasound (HIFU) can be used to control bleeding, both from individual blood vessels as well as from gross damage to the capillary bed. This process, called acoustic hemostasis, is being studied in the hope that such a method would ultimately provide a lifesaving treatment during the so-called "golden hour", a brief grace period after a severe trauma in which prompt therapy can save the life of an injured person. Thermal effects play a major role in occlusion of small vessels and also appear to contribute to the sealing of punctures in major blood vessels. However, aggressive ultrasound-induced tissue heating can also impact healthy tissue and can lead to deleterious mechanical bioeffects. Moreover, the presence of vascularity can limit one’s ability to elevate the temperature of blood vessel walls owing to convective heat transport. In an effort to better understand the heating process in tissues with vascular structure we have developed a numerical simulation that couples models for ultrasound propagation, acoustic streaming, ultrasound heating and blood cooling in Newtonian viscous media. The 3-D simulation allows for the study of complicated biological structures and insonation geometries. We have also undertaken a series of in vitro experiments, in non-uniform flow-through tissue phantoms, designed to provide a ground truth verification of the model predictions. The calculated and measured results were compared over a range of values for insonation pressure, insonation time, and flow rate; we show good agreement between predictions and measurements. We then conducted a series of simulations that address two limiting problems of interest: hemostasis in small and large vessels. We employed realistic human tissue properties and considered more complex geometries. Results show that the heating pattern in and around a blood vessel is different for different vessel sizes, flow rates and for varying beam orientations relative to the flow axis. Complete occlusion and wall- puncture sealing are both possible depending on the exposure conditions. These results concur with prior clinical observations and may prove useful for planning of a more effective procedure in HIFU treatments.
Resumo:
Ecological concern prompts poor and indigenous people of India to consider how a society can ensure both protection of nature and their rightful claim for a just and sustainable future. Previous discussions defended the environment while ignoring the struggles of the poor for sustenance and their religious traditions and ethical values. Mohandas Karamchand Gandhi addressed similar socio-ecological concerns by adopting and adapting traditional religious and ethical notions to develop strategies for constructive, engaged resistance. The dissertation research and analysis verifies the continued relevance of the Gandhian understanding of dharma (ethics) in contemporary India as a basis for developing eco-dharma (eco-ethics) to link closely development, ecology, and religious values. The method of this study is interpretive, analytical, and critical. Françoise Houtart’s social analytical method is used to make visible and to suggest how to overcome social tensions from the perspective of marginalized and exploited peoples in India. The Indian government's development initiatives create a nexus between the eco-crisis and economic injustice, and communities’ responses. The Chipko movement seeks to protect the Himalayan forests from commercial logging. The Narmada Bachao Andolan strives to preserve the Narmada River and its forests and communities, where dam construction causes displacement. The use of Gandhian approaches by these movements provides a framework for integrating ecological concerns with people's struggles for survival. For Gandhi, dharma is a harmony of satya (truth), ahimsa (nonviolence), and sarvodaya (welfare of all). Eco-dharma is an integral, communitarian, and ecologically sensitive ethical paradigm. The study demonstrates that the Gandhian notion of dharma, implemented through nonviolent satyagraha (firmness in promoting truth), can direct community action that promotes responsible economic structures and the well-being of the biotic community and the environment. Eco-dharma calls for solidarity, constructive resistance, and ecologically and economically viable communities. The dissertation recommends that for a sustainable future, India must combine indigenous, appropriate, and small- or medium-scale industries as an alternative model of development in order to help reduce systemic poverty while enhancing ecological well-being.
Resumo:
A novel approach for real-time skin segmentation in video sequences is described. The approach enables reliable skin segmentation despite wide variation in illumination during tracking. An explicit second order Markov model is used to predict evolution of the skin-color (HSV) histogram over time. Histograms are dynamically updated based on feedback from the current segmentation and predictions of the Markov model. The evolution of the skin-color distribution at each frame is parameterized by translation, scaling and rotation in color space. Consequent changes in geometric parameterization of the distribution are propagated by warping and resampling the histogram. The parameters of the discrete-time dynamic Markov model are estimated using Maximum Likelihood Estimation, and also evolve over time. The accuracy of the new dynamic skin color segmentation algorithm is compared to that obtained via a static color model. Segmentation accuracy is evaluated using labeled ground-truth video sequences taken from staged experiments and popular movies. An overall increase in segmentation accuracy of up to 24% is observed in 17 out of 21 test sequences. In all but one case the skin-color classification rates for our system were higher, with background classification rates comparable to those of the static segmentation.
Resumo:
A probabilistic, nonlinear supervised learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA employs a set of several forward mapping functions that are estimated automatically from training data. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). The SMA can model ambiguous, one-to-many mappings that may yield multiple valid output hypotheses. Once learned, the mapping functions generate a set of output hypotheses for a given input via a statistical inference procedure. The SMA inference procedure incorporates an inverse mapping or feedback function in evaluating the likelihood of each of the hypothesis. Possible feedback functions include computer graphics rendering routines that can generate images for given hypotheses. The SMA employs a variant of the Expectation-Maximization algorithm for simultaneous learning of the specialized domains along with the mapping functions, and approximate strategies for inference. The framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human’s body or hands, given silhouettes from a single image. The accuracy and stability of the SMA are also tested using synthetic images of human bodies and hands, where ground truth is known.
Resumo:
A novel technique to detect and localize periodic movements in video is presented. The distinctive feature of the technique is that it requires neither feature tracking nor object segmentation. Intensity patterns along linear sample paths in space-time are used in estimation of period of object motion in a given sequence of frames. Sample paths are obtained by connecting (in space-time) sample points from regions of high motion magnitude in the first and last frames. Oscillations in intensity values are induced at time instants when an object intersects the sample path. The locations of peaks in intensity are determined by parameters of both cyclic object motion and orientation of the sample path with respect to object motion. The information about peaks is used in a least squares framework to obtain an initial estimate of these parameters. The estimate is further refined using the full intensity profile. The best estimate for the period of cyclic object motion is obtained by looking for consensus among estimates from many sample paths. The proposed technique is evaluated with synthetic videos where ground-truth is known, and with American Sign Language videos where the goal is to detect periodic hand motions.
Resumo:
An appearance-based framework for 3D hand shape classification and simultaneous camera viewpoint estimation is presented. Given an input image of a segmented hand, the most similar matches from a large database of synthetic hand images are retrieved. The ground truth labels of those matches, containing hand shape and camera viewpoint information, are returned by the system as estimates for the input image. Database retrieval is done hierarchically, by first quickly rejecting the vast majority of all database views, and then ranking the remaining candidates in order of similarity to the input. Four different similarity measures are employed, based on edge location, edge orientation, finger location and geometric moments.
Resumo:
An automated system for detection of head movements is described. The goal is to label relevant head gestures in video of American Sign Language (ASL) communication. In the system, a 3D head tracker recovers head rotation and translation parameters from monocular video. Relevant head gestures are then detected by analyzing the length and frequency of the motion signal's peaks and valleys. Each parameter is analyzed independently, due to the fact that a number of relevant head movements in ASL are associated with major changes around one rotational axis. No explicit training of the system is necessary. Currently, the system can detect "head shakes." In experimental evaluation, classification performance is compared against ground-truth labels obtained from ASL linguists. Initial results are promising, as the system matches the linguists' labels in a significant number of cases.
Resumo:
We present a framework for estimating 3D relative structure (shape) and motion given objects undergoing nonrigid deformation as observed from a fixed camera, under perspective projection. Deforming surfaces are approximated as piece-wise planar, and piece-wise rigid. Robust registration methods allow tracking of corresponding image patches from view to view and recovery of 3D shape despite occlusions, discontinuities, and varying illumination conditions. Many relatively small planar/rigid image patch trackers are scattered throughout the image; resulting estimates of structure and motion at each patch are combined over local neighborhoods via an oriented particle systems formulation. Preliminary experiments have been conducted on real image sequences of deforming objects and on synthetic sequences where ground truth is known.
Resumo:
A novel approach for real-time skin segmentation in video sequences is described. The approach enables reliable skin segmentation despite wide variation in illumination during tracking. An explicit second order Markov model is used to predict evolution of the skin color (HSV) histogram over time. Histograms are dynamically updated based on feedback from the current segmentation and based on predictions of the Markov model. The evolution of the skin color distribution at each frame is parameterized by translation, scaling and rotation in color space. Consequent changes in geometric parameterization of the distribution are propagated by warping and re-sampling the histogram. The parameters of the discrete-time dynamic Markov model are estimated using Maximum Likelihood Estimation, and also evolve over time. Quantitative evaluation of the method was conducted on labeled ground-truth video sequences taken from popular movies.
Resumo:
It is a neural network truth universally acknowledged, that the signal transmitted to a target node must be equal to the product of the path signal times a weight. Analysis of catastrophic forgetting by distributed codes leads to the unexpected conclusion that this universal synaptic transmission rule may not be optimal in certain neural networks. The distributed outstar, a network designed to support stable codes with fast or slow learning, generalizes the outstar network for spatial pattern learning. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field, of arbitrarily many nodes, where the activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse whereby a path weight decreases in joint proportion to the transmittcd path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals three types of synaptic transmission, a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all when source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the optimal unit of long-term memory in such a system is a subtractive threshold, rather than a multiplicative weight.
Resumo:
We propose that a simple, closed-form mathematical expression--the Wedge-Dipole mapping--provides a concise approximation to the full-field, two-dimensional topographic structure of macaque V1, V2, and V3. A single map function, which we term a map complex, acts as a simultaneous descriptor of all three areas. Quantitative estimation of the Wedge-Dipole parameters is provided via 2DG data of central-field V1 topography and a publicly available data set of full-field macaque V1 and V2 topography. Good quantitative agreement is obtained between the data and the model presented here. The increasing importance of fMRI-based brain imaging motivates the development of more sophisticated two-dimensional models of cortical visuotopy, in contrast to the one-dimensional approximations that have been in common use. One reason is that topography has traditionally supplied an important aspect of "ground truth", or validation, for brain imaging, suggesting that further development of high-resolution fMRI will be facilitated by this data analysis. In addition, several important insights into the nature of cortical topography follows from this work. The presence of anisotropy in cortical magnification factor is shown to follow mathematically from the shared boundary conditions at the V1-V2 and V2-V3 borders, and therefore may not causally follow from the existence of columnar systems in these areas, as is widely assumed. An application of the Wedge-Dipole model to localizing aspects of visual processing to specific cortical areas--extending previous work in correlating V1 cortical magnification factor to retinal anatomy or visual psychophysics data--is briefly discussed.