934 resultados para Tris(2-thienyl)methane


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the delivery of terrestrial organic carbon (OC) to the Amazon shelf and deep sea fan based on soil marker bacteriohopanepolyols (BHPs; adenosylhopane and related compounds) and branched glycerol dialkyl glycerol tetraethers (GDGTs), as well as on 14C dating of bulk organic matter. The microbial biomarker records show persistent burial of terrestrial OC, evidenced by almost constant and high BIT values (0.6) and soil marker BHP concentration [80-230 µg/g TOC (total OC)] on the late Holocene shelf and even higher BIT values (0.8-0.9), but lower and more variable soil-marker BHP concentration (40-100 µg/g TOC), on the past glacial deep sea fan. Radiocarbon data show that OC on the shelf is 3-4 kyr older than corresponding bivalve shells, emphasizing the presence of old carbon in this setting. We observe comparable and unexpectedly invariant BHP composition in both marine sediment records, with a remarkably high relative abundance of C-35 amino BHPs including compounds specific for aerobic methane oxidation on the shelf (avg. 50% of all BHPs) and the fan (avg. 40%). Notably, these marine BHP signatures are strikingly similar to those of a methane-producing floodplain area in one of the Amazonian wetland (várzea) regions. The observation indicates that BHPs in the marine sediments may have initially been produced within wetland regions of the Amazon basin and may therefore document persistent export from terrestrial wetland regions, with subsequent re-working in the marine environment, both during recent and past glacial climate conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authigenic carbonates forming at an active methane-seep on the Makran accretionary prism mainly consist of aragonite in the form of microcrystalline, cryptocrystalline, and botryoidal phases. The d13Ccarbonate values are very negative (-49.0 to -44.0 per mill V-PDB), agreeing with microbial methane as dominant carbon source. The d18Ocarbonate values are exclusively positive (+ 3.0 to + 4.5 per mill V-PDB) and indicate precipitation in equilibrium with seawater at bottom water temperatures. The content of rare earth elements and yttrium (REE + Y) determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and solution ICP-MS varies for each aragonite variety, with early microcrystalline aragonite yielding the highest, cryptocrystalline aragonite intermediate, and later botryoidal aragonite the lowest REE + Y concentrations. Shale-normalised REE + Y patterns of different types of authigenic carbonate reflect distinct pore fluid compositions during precipitation: Microcrystalline aragonite shows high contents of middle rare earth elements (MREE), reflecting REE patterns ascribed to anoxic pore water. Cryptocrystalline aragonite exhibits a seawater-like REE + Y pattern at elevated total REE + Y concentrations, indicating higher concentrations of REEs in pore waters, which were influenced by seawater. Botryoidal aragonite is characterised by seawater-like REE + Y patterns at initial growth stages followed by an increase of light rare earth elements (LREE) with advancing crystal growth, reflecting changing pore fluid composition during precipitation of this cement. Conventional sample preparation involving micro-drilling of carbonate phases and subsequent solution ICP-MS does not allow to recognise such subtle changes in the REE + Y composition of individual carbonate phases. To be able to reconstruct the evolution of pore water composition during early diagenesis, an analytical approach is required that allows to track the changing elemental composition in a paragenetic sequence as well as in individual phases. High-resolution analysis of seep carbonates from the Makran accretionary prism by LA-ICP-MS reveals that pore fluid composition not only evolved in the course of the formation of different phases, but also changed during the precipitation of individual phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First videographic indication of an Antarctic cold seep ecosystem was recently obtained from the collapsed Larsen B ice shelf, western Weddell Sea (Domack et al., 2005). Within the framework of the R/V Polarstern expedition ANTXXIII-8, we revisited this area for geochemical, microbiological and further videographical examinations. During two dives with ROV Cherokee (MARUM, Bremen), several bivalve shell agglomerations of the seep-associated, chemosynthetic clam Calyptogena sp. were found in the trough of the Crane and Evans glacier. The absence of living clam specimens indicates that the flux of sulphide and hence the seepage activity is diminished at present. This impression was further substantiated by our geochemical observations. Concentrations of thermogenic methane were moderately elevated with 2 µM in surface sediments of a clam patch, increasing up to 9 µM at a sediment depth of about 1 m in the bottom sections of the sediment cores. This correlated with a moderate decrease in sulphate from about 28 mM at the surface down to 23.4 mM, an increase in sulphide to up to 1.43 mM and elevated rates of the anaerobic oxidation of methane (AOM) of up to 600 pmol cm**-3 d**-1 at about 1 m below the seafloor. Molecular analyses indicate that methanotrophic archaea related to ANME-3 are the most likely candidates mediating AOM in sediments of the Larsen B seep.