988 resultados para Transcriptase-pcr Assay
Resumo:
We characterized the consensus sequence and structure of a long terminal repeat (LTR) retrotransposon from the genome of the human blood fluke, Schistosoma japonicum, and have earned this element, Gulliver. The full length, consensus Gulliver LTR retrotransposon was 4788 bp, and it was flanked at its 5'- and 3'-ends by LTRs of 259 bp. Each LTR included RNA polymerase II promoter sequences, a CAAT signal and a TATA box, Gulliver exhibited features characteristic of a functional LTR retrotransposon including two read through (termination) ORFs encoding retroviral gag and pol proteins of 312 and 1071 amino acid residues, respectively. The gag ORF encoded motifs conserved in nucleic acid binding proteins, while the pol ORF encoded conserved domains of aspartic protease, reverse transcriptase (RT), RNaseH and integrase, in that order, a pol pattern conserved in the gypsy lineage of LTR retrotransposons. Whereas the sequence and structure of Gulliver was similar to that of gypsy, phylogenetic analysis revealed that Gulliver did not group particularly closely with the gypsy family. Rather, its closest relatives were a LTR retrotransposon from Caenorhabditis elegans, mag from Bombyx mori and, to a lesser extent, easel from the salmon Oncorhynchus keta. Dot blot hybridizations indicated that Gulliver was present at between 100 and several thousand copies in the S. japonicum genome, and Southern hybridization analysis suggested its probable presence in the genome of Schistosoma mansoni. Transcripts encoding the RT domain of Gulliver were detected by RT-PCR in larval and adult stages of S. japonicum, indicating that (at least) the RT domain of Gulliver is transcribed. This is the first report of the sequence and structure of an LTR retrotransposon from any schistosome or indeed from any species belonging to the phylum Platyhelminthes. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Single cell genetic analysis is generally performed using PCR and FISH. Until recently, FISH has been the method of choice. FISH however is expensive, has significant misdiagnosis rates, can result in interpretation difficulties and is labour intensive making it unsuitable for high throughput processing. Recently fluorescent PCR reliability has increased to levels at or surpassing FISH whilst maintaining low cost. However, PCR accuracy has been a concern due to allelic dropout. Multiplex PCR can now increase accuracy by using multiple markers for each chromosome to firstly provide diagnosis if markers fail and,or secondly confirm diagnosis. We compare a variety of diagnostic methods and demonstrate for the first time a multiplex PCR system providing simultaneous diagnosis and confirmation of the major aneuploidy chromosomes (21, 18, 13) and sex as well as DNA fingerprint in single cells. We also discuss the implications of using PCR for aneuploidy screening in preimplantation genetic diagnosis. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
We have developed a highly sensitive cytolysis test, the fluorolysis assay, as a simple nonradioactive and inexpensive alternative to the standard Cr-51-release assay. P815 cells were stably transfected with a plasmid expressing the enhanced green fluorescent protein (EGFP) gene. These target cells were coated with or without cognate peptide or anti-CD3 Ab and then incubated with CD8(+) T cells to allow antigen-specific or nonspecific lysis. The degree of target cell lysis was measured using flow cytometry to count the percentage of viable propidium iodide(-) EGFP(+) cells, whose numbers were standardized to a reference number of fluorochrome-linked beads. By using small numbers of target cells (200-800 per reaction) and extended incubation times (up to 2 days), the antigen-specific cytolytic activity of one to two activated CD8(+) T cells of a CTL line could be detected. The redirected fluorolysis assay also measured the activity of very few ( greater than or equal to6) primary CD8(+) T cells following polyclonal activation. Importantly, antigen-specific lysis by small numbers ( greater than or equal to 25) of primary CD8(+) T cells could be directly measured ex vivo. This exquisite sensitivity of the fluorolysis assay, which was at least 8-33-folds higher than an optimized 51 Cr-release assay, allows in vitro and ex vivo studies of immune responses that would otherwise not be possible due to low CTL numbers or frequencies. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A semi-nested polymerase chain reaction (PCR) was evaluated for detection of Japanese encephalitis (JE) virus in infected mosquitoes stored under simulated northern Australian summer conditions. The effect of silica gel, thymol, and a combination of the two on RNA stability and virus viability in dead mosquitoes were also examined. While JE virus RNA was relatively stable in mosquitoes held for up to 14 days after death, viable virus was not detected after day 1. Thymol vapor inhibited fungal contamination. Detection of single mosquitoes infected with JE virus in large pools of mosquitoes was also investigated. Single laboratory-infected mosquitoes were detected in pools of less than or equal to200 mosquitoes and in pools diluted to 0.2/100 and 0.1/100 mosquitoes, using the semi-nested PCR. However, the ability to detect live virus decreased as pool size increased. The semi-nested PCR proved more expensive than virus isolation for pools of 100 mosquitoes. However, the semi-nested PCR was faster and more economical using larger pools. Results indicate that surveillance of JE virus in mosquitoes using the semi-nested PCR is an alternative to monitoring seroconversions in sentinel pigs.
Resumo:
We cloned the complete complementary DNA of an isolate of the hepatitis C virus, HCV-S1, into a tetra cycline-inducible expression vector and stably transfected it into two human hepatoma cell lines, Huh7 and HepG2. Twenty-six Huh7 and two HepG2-positive clones were obtained after preliminary screening. Two Huh7 (SH-7 and -9) and one HepG2 (G-19) clones were chosen for further characterisation. Expression of HCV proteins in these cells accumulated from 6 In to 4 days posttreatment. Full-length viral plus-strand RNA was detected by Northern analyses. Using RT-PCR and ribonuclease protection assay, we also detected the synthesis of minus-strand HCV RNA. Plus- and minus-strand viral RNA was still detected after treatment with actinomycin D. Indirect immunofluorescence staining with anti-E2, NS4B, and NS5A revealed that these proteins were mostly localised to the endoplasmic reticulum (ER). Culture media from tet-induced SH-9 cells was separated on sucrose density gradients and analysed for the presence of HCV RNA. Viral RNA levels peaked at two separate ranges, one with a buoyant density of 1.08 g/ml and another from 1.17 to 1.39 g/ml. Electron microscopy demonstrated the presence of subviral-like particles (approximately 20-25 nm in diameter) in the cytoplasm of SH-9 and G-19 cells, which were positively labelled by anti-HCV core antibodies. Anti-E2 antibodies strongly labelled cytoplasmic vesicular structures and some viral-like particles. Complete viral particles of about 50 nm which reacted with anti-E2 antibodies were observed in the culture media of tet-induced SH-9 cells following negative staining. Supernatant from tet-treated SH-9 cells was found to infect naive Huh7 and stable Huh7-human CD81 cells. (C) 2002 Elsevier Science (USA).
Resumo:
Primers and DNA probes designed for use in the specific detection of the paramyxean parasites Marteilia sydneyi and Marteilia refringens were tested for their potential to cross-react with closely related species in Polymerase Chain Reaction (PCR) and in situ hybridization. PCR primers and a DNA probe designed within the ITS1 rRNA of M. sydneyi were specific for M. sydneyi when compared with related species of Marteilia and Marteilioides. PCR primers designed within the 18S rRNA of M. refringens were specific in the detection of this species in PCR while a DNA probe (named Smart 2) designed on the same gene cross-reacted with M. sydneyi in tissue sections of Saccostrea glomerata as well as Marteilioides sp. infecting Striostrea mytiloides. Though not species specific, the Smart 2 probe provided a stronger signal in detection of all stages of M. sydneyi than the ITS1 probe. The ITS probe is proposed for use as a confirmatory diagnostic too] for M. sydneyi.
Resumo:
The study of viral-based processes is hampered by (a) their complex, transient nature, (b) the instability of products, and (c) the lack of accurate diagnostic assays. Here, we describe the use of real-time quantitative polymerase chain reaction to characterize baculoviral infection. Baculovirus DNA content doubles every 1.7 h from 6 h post-infection until replication is halted at the onset of budding. No dynamic equilibrium exists between replication and release, and the kinetics are independent of the cell density at the time of infection. No more than 16% of the intracellular virus copies bud from the cell. (C) 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 476-480, 2002; DOI 10.1002/bit.10126.
Resumo:
Background and Aims: Zomepirac (ZP), a non-steroidal anti-inflammatory drug (NSAID), has been reported to cause immune-mediated liver injury. In vivo, ZP is metabolized to a chemically reactive acyl glucuronide conjugate (ZAG) which can undergo covalent adduct formation with proteins. Such acyl glucuronide-derived drug-protein adducts may be important in the development of immune and toxic responses caused by NSAID. We have shown using immunoabsorptions that the 110 kDa CD26 (dipeptidyl peptidase IV) is one of the hepatic target proteins for covalent modification by ZAG. In the present study, a CD26-deficient mouse strain was used to examine protein targets for covalent modification by ZP/metabolites in the liver. Methods and Results: The CD26-deficient phenotype was confirmed by immunohistochemistry, flow cytometry analysis, RT-PCR, enzyme assay and immunoblotting. Moreover, by using monoclonal antibody immunoblots, CD26 was not detected in the livers of ZP-treated CD26-deficient mice. Immunoblots using a polyclonal antiserum to ZP on liver from ZP-treated mice showed three major sizes of protein bands, in the 70, 110 and 140 kDa regions. Most, but not all, of the anti-ZP immunoreactivity in the 110 kDa region was absent from ZP-treated CD26-deficient mice. Conclusion: These data definitively showed that CD26 was a component of ZP-modified proteins in vivo. In addition, the data suggested that at least one other protein of approximately 110 kDa was modified by covalent adduct formation with ZAG. (C) 2002 Blackwell Science Asia Pty Ltd.
Resumo:
The aim of this study was to further investigate the mechanism of suppression of natural killer (NK) cell cytotoxic activity In peripheral blood following strenuous exercise. Blood was collected for analysis of NK cell concentration, cytotoxic activity, CD2 surface expression and perforin gene expression from runners (RUN, n = 6) and resting controls (CONTROL, n = 4) pre-exercise, 0, 1.5, 5, and 24 h following a 60-min treadmill run at 80% of VO2 peak. Natural killer cytotoxic activity, measured using a whole blood chromium release assay, fluctuated minimally in the CONTROL group and increased by 63% and decreased by 43% 0 and 1.5 h post-exercise, respectively, in the RUN group (group x time, P < 0.001). Lytic index (cytotoxic activity per cell) did not change. Perforin mRNA, measured using quantitative real-time polymerase chain reaction (ORT-PCR) decreased from pre- to post-exercise and remained decreased through 24 h, The decrease from pre- to 0 In post-exercise was seen predominately in the RUN group and was inversely correlated r = - 0.95) to pre-exercise perform mRNA. The NK cell surface expression of CD2 (lymphocyte function-associated antigen-2) was determined using fluorescent antibodies and flow cytometry, There was no change in the proportion of NK cells expressing CD2 or CD2 density, We conclude that (1) numerical redistribution accounted for most of the change in NK cytotoxic activity following a strenuous run, (2) decrease in perforin gene expression during the run was inversely related to pre-exercise levels but did not parallel changes in cytotoxic activity, and (3) CD2 surface expression was not affected by exercise.
Resumo:
Peroxisome proliferator-activated receptor (PPAR) alpha is a ligand-activated transcription factor that has been linked with rodent hepatocarcinogenesis. It has been suggested that PPARalpha mRNA expression levels are an important determinant of rodent hepatic tumorigenicity. Previous work in rat mammary gland epithelial cells showed significantly increased PPARalpha mRNA expression in carcinomas, suggesting the possible role of this isoform in rodent mammary gland carcinogenesis. In this study we sought to determine whether PPARalpha is expressed and dynamically regulated in human breast cancer MCF-7 and MDA-MB-231 cells. Having established the presence of PPARalpha in both cell types, we then examined the consequence of PPARa activation, by its ligands Wy-14,643 and clofibrate, on proliferation. With real-time reverse transcriptase-polymerase chain reaction, we showed that PPARalpha mRNA was dynamically regulated in MDA-MB-231 cells and that PPARalpha activation significantly increased proliferation of the cell line. In contrast, PPARalpha expression in MCF-7 cells did not change with proliferation during culture and was present at significantly lower levels than in MDA-MB-231 cells. However, PPARalpha ligand activation still significantly increased the proliferation of MCF-7 cells. The promotion of proliferation in breast cancer cell lines following PPARalpha activation was in stark contrast to the effects of PPARgamma-activating ligands that decrease proliferation in human breast cancer cells. our results established the presence of PPARalpha in human breast cancer cell lines and showed for the first time that activation of PPARalpha in human breast cancer cells promoted proliferation. Hence, this pathway may be significant in mammary gland tumorigenesis. (C) 2002 Wiley-Liss, Inc.
Resumo:
Extended-spectrum beta-lactamases (ESBLs) are active against oxyimino cephalosporins and monobactams. Twenty-one Klebsiella pneumoniae isolates obtained between 1991 and 1995 at the Princess Alexandra Hospital in Brisbane, Australia, were subject to amplification and sequencing of the SHV beta-lactamase-encoding genes. Thirteen strains were phenotypically ESBL positive. Of these, six strains carried the bla(SHV-2a) gene and seven strains carried the bla(SHV-12) gene. Eight strains were phenotypically ESBL negative. Of these, seven strains carried the non-ESBL bla(SHV-11) gene and one strain carried the non-ESBL bla(SHV-1) gene. There was complete correspondence between the ESBL phenotype and the presence or absence of an ESBL-encoding gene(s). In addition, it was determined that of the 13 ESBL-positive strains, at least 4 carried copies of a non-ESBL-encoding gene in addition to the bla(SHV-2a) or bla(SHV12) gene. A minisequencing-based assay was developed to discriminate the different SHV classes. This technique, termed first-nucleotide change, involves the identification of the base added to a primer in a single-nucleotide extension reaction. The assay targeted polymorphisms at the first bases of codons 238 and 240 and reliably discriminated ESBL-positive strains from ESBL-negative strains and also distinguished strains carrying bla(SHV-2a) from strains carrying bla(SHV-12). In addition, this method was used to demonstrated an association between the relative copy numbers of bla(SHV) genes in individual strains and the levels of antibiotic resistance.
Resumo:
A rapid and reliable polymerase chain reaction (PCR)-based protocol was developed for detecting zygosity of the 1BL/1RS translocation in hexaploid wheat. The protocol involved a multiplex PCR with 2 pairs of oligonucleotide primers, rye-specific Ris-1 primers, and consensus 5S intergenic spacer (IGS) primers, and digestion of the PCR products with the restriction enzyme, MseI. A small piece of alkali-treated intact leaf tissue is used as a template for the PCR, thereby eliminating the necessity for DNA extraction. The test is simple, highly sensitive, and rapid compared with the other detection systems of 1BS1RS heterozygotes in hexaploid wheat. PCR results were confirmed with AFLP analyses. Diagnostic tests for 1BL/1RS translocation based on Sec-1-specific ELISA, screening for chromosome arm 1RS controlled rust resistance locus Yr9, and the PCR test differed in their ability to detect heterozygotes. The PCR test and rust test detected more heterozygotes than the ELISA test. The PCR test is being used to facilitate S1 family recurrent selection in the Germplasm Enhancement Program of the Australian Northern Wheat Improvement Program. A combination of the PCR zygosity test with other markers currently being implemented in the breeding program makes this test economical for 1BL/1RS characterisation of S1 families.