864 resultados para Titanium mesh
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fifty-four extracted human mandibular molars were embedded and sectioned at two levels. The reassembled mesial root canals were prepared with stainless-steel hand K-files (Flexofiles) and either Nitiflex or Mity nickel-titanium hand K-files using a push-pull anticurvature filing technique. Each of the three experimental groups contained 36 mesial canals randomly distributed. Superimposed pre- and postinstrumentation cross-sectional root images were magnified using a stereomicroscope and transferred to a computer for measurement and statistical analysis. The direction and extent of canal center movement were evaluated. At the apical level, the groups produced no significant difference of direction of canal center movement. In cervical sections, all groups tended to move in a distolingual direction. The three groups, however, produced no significant difference in the cervical sections in the extent of canal center movement. In apical sections, Nitiflex produced the least canal center movement. Copyright © 1999 by The American Association of Endodontists.
Resumo:
Degradation of reactive dye Remazol Brilliant Orange 3R (RBO) has been performed using photoeletrocatalysis. A biased potential is applied across a titanium dioxide thin-film photoelectrode illuminated by UV light. It is suggested that charges photogenerated at the electrode surface give rise to chlorine generation and powerful oxidants (OH) that causes the dye solution to decolorize. Rate constants calculated from color decay versus time reveal a first-order reaction up to 5.0×10-5 mol l-1 in dye concentration. The best experimental conditions were found to be pH 6.0 and 1.0 mol l-1 NaCl when the photoelectrode was biased at +1V (versus SCE). Almost complete mineralization of the dye content (70% TOC reduction) was achieved in a 3-h period using these conditions. Effects of other electrolytes, dye concentration and applied potentials also have been investigated and are discussed. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
PURPOSE: To evaluate the number and morphology of fibroblasts grown on machined titanium healing abutments treated with an airpowder system. MATERIALS AND METHODS: Twenty-six abutments were assigned to two experimental groups: control (no treatment) and treated (exposed to the Prophy-Jet for 30 seconds). The specimens were incubated for 24 hours with fibroblastic cells in multiwell plates, followed by routine laboratory processing for scanning electron microscope analysis. The specimens were photographed at x 350, and the cell number was counted on an area of approximately 200 um2. RESULTS: No significant differences were found on morphology between the groups (P > 0.05); however, the control group presented a significantly greater amount of cells (71.44 +/- 31.93, mean +/- SD) in comparison with treated group (35.31 +/- 28.14), as indicated by a nonpaired t test (P = 0.001). CONCLUSION: The use of an air-abrasive prophylaxis system on the surface of titanium healing abutments reduced the cells proliferation but did not influence cell morphology.
Resumo:
In this study, the photoelectrocatalytic behavior of bromide and generation of bromine using TiO2 was investigated in the separate anode and cathode reaction chambers. Our results show that the generation of bromine begins around a flatband potential of -0.34 V vs. standard calomel electrode (SCE) at pH 3.0 under UV illumination and increases with an increase in positive potential, finally reaching a steady-state concentration at 1.0 V vs. SCE. Maximum bromine formation occurs over the range of pH 4-6, decreasing sharply at conditions where the pH > 7. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
The production of chlorine and hypochlorite is of great economical and technological interest due to their large-scale use in many kinds of commercial applications. Yet, the current processes are not without problems such as inevitable side reactions and the high cost of production. This work reports the photoelectrocatalytic oxidation of chloride ions to free chlorine as it has been investigated by using titanium dioxide (TiO2) and several metal-doped titanium dioxide (M-TiO2) material electrodes. An average concentration of 800 mg L-1 of free chlorine was obtained in an open-air reactor using a TiO2 thin-film electrode biased at +1.0 V (SCE) and illuminated by UV light. The M-doped electrodes have performed poorly compared with the pure TiO2 counterpart. Test solutions containing 0.05 mol L-1 NaCl pH 2.0-4.0 were found to be the best conditions for fast production of free chlorine. A complete investigation of all parameters that influence the global process of chlorine production by the photoelectrocatalytic method such as applied potential, concentration of NaCl, pH solution, and time is presented in detail. In addition, photocurrent vs potential curves and the reaction order are also discussed.
Resumo:
The processing of titanium porous coatings using powder metallurgy technique to achieve a porous structure that allows osseointegration with bone tissue was discussed. The porous microstructure exhibited micropores and interconnected macropores with size ranges that allowed bone ingrowth. The macropores in the coatings were originated from the binder evaporation while the micropore was related with the porous titanium powder and the low compaction pressure used. The in vivo evaluation indicated that osseointegration had occurred between the bone and porous material.
Resumo:
The purpose of this study was to compare by qualitative histology the efficacy of rigid internal fixation with titanium system and the Lacto Sorb® system in mandibular fractures in rabbits. Thirty male adult rabbits Oryctolagus cuniculus were used. Unilateral mandibular osteotomies were performed between the canine and first premolar. The animals were divided into two groups: for Group I - rigid internal fixation was performed with titanium system 1.5 mm (Synthes, Oberdorf, Switzerland), with two screws of 6 mm (bicortical) on each side of the osteotomy. For Group II-rigid internal fixation was performed with PLLA/PGA system 1.5 mm (Lacto Sorb®, WLorenz, Jacksonville, FL, USA). The histological analysis evaluated the presence of inflammatory reaction, degree of bone healing and degree of resorption of the Lacto Sorb® screws. The results of both fixation systems were similar, only with a small difference after 15 and 30 days. In Group I a faster bony healing was noted. But after 60 days, bony healing was similar in both groups. It is concluded that both PLLA/PGA and titanium plates and screws provide sufficient strength to permit mandibular bone healing. The resorption process of PLLA/PGA osteosynthesis material did not cause acute or chronic inflammatory reaction or foreign body reaction during the studied period. © 2004 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Resumo:
Heating titanium structures is assumed to relieve tensions induced by the casting process as well as possibly optimizing some mechanical properties. The aim of this investigation was to evaluate the effect of thermal treatments on tensile strength of commercially pure titanium (CP Ti) and Ti-6Al-4V alloy. Thirty dumbbell rods, with diameters of 3.0 mm at the central segment and lengths of 42 mm, were cast for each metal using the Rematitan System. CP Ti and Ti-6Al-4V specimens were randomly divided into three groups of ten: a control group that received no thermal treatment and two test groups. One (T1) was heated at 750°C for 2 h and the other (T2) was annealed at 955°C for 1 h and aged at 620°C for 2 h. Tensile strength was measured with a universal testing machine (MTS model 810). Tensile strength means and standard deviations were statistically compared using a Kruskal-Wallis test at a α = 0.05 significance level. No statistically significant differences in tensile strength were observed among CP Ti groups. For the Ti-6Al-4V alloy, the control and T1 groups revealed statistically higher tensile strengths when compared to the T2 group, with no significant difference between the control and T1 groups. © 2005 Springer Science + Business Media, Inc.
Vickers hardness of cast commercially pure titanium and Ti-6Al-4V alloy submitted to heat treatments
Resumo:
The purpose of this study was to evaluate the effect of heat treatments on the Vickers hardness of commercially pure titanium and Ti-6Al-4V cast alloys. Six-millimeter-diameter cylindrical specimens were cast in a Rematitan System. Commercially pure titanium and Ti-6Al-4V alloy specimens were randomly assigned to 3 groups (n=10) that received the following heat treatments: control (no heat treatment); treatment 1 (T1): heating at 750°C for 2 h; and treatment 2 (T2): annealing at 955°C for 1 h and aging at 620°C for 2 h. After heat treatments, the specimens were embedded in acrylic resin and their surface was ground and polished and hardness was measured. Vickers hardness means (VHN) and standard deviations were analyzed statistically by Kruskal-Wallis test at 5% significance level. For commercially pure titanium, Vickers hardness means of group T2 (259.90 VHN) was significantly higher than those of the other groups (control - 200.26 VHN and T1 - 202.23 VHN), which presented similar hardness means to each other (p>0.05). For Ti-6Al-4V alloy, statistically significant differences were observed among the three groups: T2 (369.08 VHN), T1 (351.94 VHN) and control (340.51 VHN) (p<0.05). The results demonstrated different hardness of CP Ti and Ti-6Al-4V when different heat treatments were used. For CP Ti, VHN means of T2 group was remarkably higher than those of control and T1 group, which showed similar VHN means to each other. For Ti-6Al-4V alloy, however, VHN means recorded for each group may be presented as follows: T2>T1>control.
Resumo:
As the adaptation of titanium crowns obtained by Rematitan Plus investment, specific for titanium, is not recognized to be suitable, this study evaluated the effect of the concentration of the specific liquid and the temperature of the mold of investments on the internal misfit of crowns cast on commercially pure titanium. Individual dies of epoxy resin were obtained, representing teeth prepared for full-crown restoration with a 6-degree axial surface convergence angle and shoulder (1.0 mm). For the waxing of each crown, a ring-shaped stainless steel matrix (8.0mm internal diameter; 7.5 mm height) was adapted above the individual dies of epoxy resin. The Rematian Plus investment was mixed according to the manufacturer's instructions using two different concentrations of the specific liquid: 100%, 75%. Casting was performed in a Discovery Plasma Ar-arc vacuum-pressure casting machine with molds at temperatures of 430°C, 515°C and 600°C. The crowns were cleaned individually in a solution (1% HF + 13% HNO3) for 10 min using a ultrasonic cleaner, with no internal adaptations, and luted with zinc phosphate cement under a 5 kg static load. The crown and die assemblies were embedded in resin and sectioned longitudinally. The area occupied by cement was observed using stereoscopic lens (10X) and measured by the Leica Qwin image analysis system (mm2). The data for each experimental condition (n=8) were analyzed by Kruskal-Wallis non-parametric test (á=0.05). The results showed that liquid dilution and the increase in mold temperature did not significantly influence the levels of internal fit of the cast titanium crowns. The lowest means (±SD) of internal misfit were obtained for the 430°C/100%: (7.25 mm2 ±1.59) and 600°C/100% (8.8 mm2 ±2.25) groups, which presented statistically similar levels of internal misfit.
Resumo:
The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures.
Resumo:
A 2-month-old dog was presented with injuries involving both hind paws. Only the 5th digit and its digital pad were present on the right paw. Following a full-thickness skin graft, the 5th digital pad was transferred distal to the metatarsal bones. The transferred pad permitted weight-bearing on the limb.
Resumo:
Pure and scandium doped-TiO2 thin films were prepared by the sol-gel process and coated by dip coating. The effects of scandium on the phase formation, optical properties and photoactivity of the TiO2 thin films were investigated. The lattice parameters and the crystallinity of the anatase phase, characterized by the Rietveld method, demonstrated that scandium doping affected the structural parameters and crystallinity of the films, modifying the absorption edge. A direct correlation was found between band gap energy and photodegradation efficiency, with lower values of band gap energy augmenting this efficiency. Moreover, a significant improvement in the catalyst's photodegradation efficiency was attained with a scandium concentration of 5.0 mol%. © 2007 Springer Science+Business Media, LLC.