915 resultados para Tin oxide, Nanoparticles, Dye-Sensitized Solar Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to improve the efficacy and safety of treatments, drug dosage needs to be adjusted to the actual needs of each patient in a truly personalized medicine approach. Key for widespread dosage adjustment is the availability of point-of-care devices able to measure plasma drug concentration in a simple, automated, and cost-effective fashion. In the present work, we introduce and test a portable, palm-sized transmission-localized surface plasmon resonance (T-LSPR) setup, comprised of off-the-shelf components and coupled with DNA-based aptamers specific to the antibiotic tobramycin (467 Da). The core of the T-LSPR setup are aptamer-functionalized gold nanoislands (NIs) deposited on a glass slide covered with fluorine-doped tin oxide (FTO), which acts as a biosensor. The gold NIs exhibit localized plasmon resonance in the visible range matching the sensitivity of the complementary metal oxide semiconductor (CMOS) image sensor employed as a light detector. The combination of gold NIs on the FTO substrate, causing NIs size and pattern irregularity, might reduce the overall sensitivity but confers extremely high stability in high-ionic solutions, allowing it to withstand numerous regeneration cycles without sensing losses. With this rather simple T-LSPR setup, we show real-time label-free detection of tobramycin in buffer, measuring concentrations down to 0.5 μM. We determined an affinity constant of the aptamer-tobramycin pair consistent with the value obtained using a commercial propagating-wave based SPR. Moreover, our label-free system can detect tobramycin in filtered undiluted blood serum, measuring concentrations down to 10 μM with a theoretical detection limit of 3.4 μM. While the association signal of tobramycin onto the aptamer is masked by the serum injection, the quantification of the captured tobramycin is possible during the dissociation phase and leads to a linear calibration curve for the concentrations over the tested range (10-80 μM). The plasmon shift following surface binding is calculated in terms of both plasmon peak location and hue, with the latter allowing faster data elaboration and real-time display of the results. The presented T-LSPR system shows for the first time label-free direct detection and quantification of a small molecule in the complex matrix of filtered undiluted blood serum. Its uncomplicated construction and compact size, together with the remarkable performances, represent a leap forward toward effective point-of-care devices for therapeutic drug concentration monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The University of Barcelona is developing a pilot-scale hot wire chemical vapor deposition (HW-CVD) set up for the deposition of nano-crystalline silicon (nc-Si:H) on 10 cm × 10 cm glass substrate at high deposition rate. The system manages 12 thin wires of 0.15-0.2 mm diameter in a very dense configuration. This permits depositing very uniform films, with inhomogeneities lower than 2.5%, at high deposition rate (1.5-3 nm/s), and maintaining the substrate temperature relatively low (250 °C). The wire configuration design, based on radicals' diffusion simulation, is exposed and the predicted homogeneity is validated with optical transmission scanning measurements of the deposited samples. Different deposition series were carried out by varying the substrate temperature, the silane to hydrogen dilution and the deposition pressure. By means of Fourier transform infrared spectroscopy (FTIR), the evolution in time of the nc-Si:H vibrational modes was monitored. Particular importance has been given to the study of the material stability against post-deposition oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we study the electronic surface passivation of crystalline silicon with intrinsic thin silicon films deposited by Catalytic CVD. The contactless method used to determine the effective surface recombination velocity was the quasi-steady-state photoconductance technique. Hydrogenated amorphous and nanocrystalline silicon films were evaluated as passivating layers on n- and p-type float zone silicon wafers. The best results were obtained with amorphous silicon films, which allowed effective surface recombination velocities as low as 60 and 130 cms -1 on p- and n-type silicon, respectively. To our knowledge, these are the best results ever reported with intrinsic amorphous silicon films deposited by Catalytic CVD. The passivating properties of nanocrystalline silicon films strongly depended on the deposition conditions, especially on the filament temperature. Samples grown at lower filament temperatures (1600 °C) allowed effective surface recombination velocities of 450 and 600 cms -1 on n- and p-type silicon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we explore the possibility of modifying the silicon nanocrystal areal density in SiOx single layers, while keeping constant their size. For this purpose, a set of SiOx monolayers with controlled thickness between two thick SiO2 layers has been fabricated, for four different compositions (x=1, 1.25, 1.5, or 1.75). The structural properties of the SiO x single layers have been analyzed by transmission electron microscopy (TEM) in planar view geometry. Energy-filtered TEM images revealed an almost constant Si-cluster size and a slight increase in the cluster areal density as the silicon content increases in the layers, while high resolution TEM images show that the size of the Si crystalline precipitates largely decreases as the SiO x stoichiometry approaches that of SiO2. The crystalline fraction was evaluated by combining the results from both techniques, finding a crystallinity reduction from 75% to 40%, for x = 1 and 1.75, respectively. Complementary photoluminescence measurements corroborate the precipitation of Si-nanocrystals with excellent emission properties for layers with the largest amount of excess silicon. The integrated emission from the nanoaggregates perfectly scales with their crystalline state, with no detectable emission for crystalline fractions below 40%. The combination of the structural and luminescence observations suggests that small Si precipitates are submitted to a higher compressive local stress applied by the SiO2 matrix that could inhibit the phase separation and, in turn, promotes the creation of nonradiative paths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The very usual columnar growth of nanocrystalline silicon leads to electronic transport anisotropies. Whereas electrical measurements with coplanar electrodes only provide information about the electronic transport parallel to the substrate, it is the transverse transport which determines the collection efficiency in thin film solar cells. Hence, Schottky diodes on transparent electrodes were obtained by hot-wire CVD in order to perform external quantum efficiency and surface photovoltage studies in sandwich configuration. These measurements allowed to calculate a transverse collection length, which must correlate with the photovoltaic performance of thin film solar cells. Furthermore, the density of charge trapped at localized states in the bandgap was estimated from the voltage dependence of the depletion capacitance of these rectifying contacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polysilicon thin film transistors (TFT) are of great interest in the field of large area microelectronics, especially because of their application as active elements in flat panel displays. Different deposition techniques are in tough competition with the objective to obtain device-quality polysilicon thin films at low temperature. In this paper we present the preliminary results obtained with the fabrication of TFT deposited by hot-wire chemical vapor deposition (HWCVD). Some results concerned with the structural characterization of the material and electrical performance of the device are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undoped hydrogenated microcrystalline silicon was obtained by hot-wire chemical vapour deposition at different silane-to-hydrogen ratios and low temperature (<300 °C). As well as technological aspects of the deposition process, we report structural, optical and electrical characterizations of the samples that were used as the active layer for preliminary p-i-n solar cells. Raman spectroscopy indicates that changing the hydrogen dilution can vary the crystalline fraction. From electrical measurements an unwanted n-type character is deduced for this undoped material. This effect could be due to a contaminant, probably oxygen, which is also observed in capacitance-voltage measurements on Schottky structures. The negative effect of contaminants on the device was dramatic and a compensated p-i-n structure was also deposited to enhance the cell performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the structural properties of a-Si:H/a-Si1-xCx: H multilayers deposited by glow-discharge decomposition of SiH4 and SiH4 and CH4 mixtures. The main feature of the rf plasma reactor is an automated substrate holder. The plasma stabilization time and its influence on the multilayer obtained is discussed. A series of a-Si:H/a-Si1-xCx: H multilayers has been deposited and characterized by secondary ion mass spectrometry (SIMS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). No asymmetry between the two types of interface has been observed. The results show that the multilayers present a very good periodicity and low roughness. The difficulty of determining the abruptness of the multilayer at the nanometer scale is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a sample holder for the electrical measurement of oxides or conducting polymers in the form of pellets or films which are used as gas sensors. The system makes it possible to control the sample temperature, the gas pressure and composition. The temperature in the sample can be changed from 25ºC to 450ºC, and the gas pressure in the chamber is controlled between 5 ¥ 10-4 and 1000 mbar. The performance of the system in resistance measurements of doped tin oxide pellets and polyaniline films deposited on platinum electrodes for methane is analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initiation step of the light-induced polymerization kinetics of vinyl monomers using dye-sensitized photoinitiators to generate active radicals is discussed. The photoredox processes of basic dyes with amines and sulfinates are described as photochemical systems capable of starting free-radical polymerization of vinyl monomers in homogeneous and microheterogeneous media. Photophysical techniques like laser flash photolysis and time-correlated single photon counting are used to investigate the excited-state kinetics of the dyes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium dioxide was prepared by hydrolysis and polycondensation of titanium tetraisopropoxide. TiO2 films were obtained by spin coating of the precursor solution on ITO substractes (glass covered with indium doped tin oxide). Films were prepared using different temperatures and hydrochloric acid contents. The effect of the drying temperature of the films (100 or 400ºC) was also investigated. TiO2 films were characterized by cyclic voltammetry, chronoamperometry, ultraviolete-visible spectroscopy, scanning electron microscopy and X-ray diffractrometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to review the chemical and physical properties of layered molybdenum disulfide. The three polymorphic/polytypic modifications of the compound were found, the polytypes 2H (molybdenite) and 3R are semiconductors while the polymorph 1T is an electronic conductor. 2H-MoS2 has several important industrial applications as hydrotreatment catalysts, energy storage devices, solar cells, solid lubricants, among others. When intercalated, the 2H phase changes to a distorted 1T phase, producing unstable intercalation compounds that can be exfoliated in solution, producing single layers and consequently nanocomposites. The direct synthesis of the 1T phase produces stable intercalation compounds. Recently molybdenum disulfide was prepared as nanotubes and fulerene-like structures that bring new insights in the investigation of this important material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manual de prácticas de la asignatura optativa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of Grid connected Photovoltaic System working with DCBoost stage is investigated. The DC-Boost Converter topology is deduced from three phase half controlled bridge and controlled by Sliding Mode Control. Due to the fact that Grid connected Photovoltaic System includes Solar cells as a DC source and inverter for grid connection, those are under the scope of this research as well. The advantages of using MPPT are analyzed. The system is simulated in Matlab-Simulink™ environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper selenide (berzelianite) films were prepared on the title substrates using the chemical bath deposition technique (CBD). Film composition was determined by energy dispersion of x-rays. The kinetics of film growth is parabolic and film adherence limits the film thickness. On titanium, copper selenide forms islands that do not completely cover the surface, unless the substrate is prepared with a tin oxide layer; film composition also depends on the titanium oxide layer. On vitreous carbon, CBD and mechanical immobilization techniques lead to films with similar resistances for the electron transfer across the film/substrate interface. On gold, composition studies revealed that film composition is always the same if the pH is in the range from 8 to 12, in contrast to films prepared by an ion-ion combination route. On copper, a new procedure for obtaining copper selenide films as thick as 5 µm has been developed.