954 resultados para Time dependent Ginzburg-Landau equations
Resumo:
A microscopic theoretical calculation of time-dependent solvation energy shows that the solvation of an ion or a dipole is dominated by a single relaxation time if the translational contribution to relaxation is significant.
Resumo:
We point out that the Mooij correlation follows naturally from a dynamically disordered tight-binding Hamiltonian with random modulations of both the diagonal and the off-diagonal matrix elements which are known to act in opposition. The dynamic disorder is treated exactly while the static disorder is incorporated approximately as an effective additional time-dependent disorder affecting the diffusive electron. Such a time translation of static disorder is known to manifest itself in certain limits as a renormalization of the diffusion coefficient. The calculated conductivity exhibits the Mooij correlation at high temperatures, where quantum coherence associated with the static disorder can be ignored.
Resumo:
The nonminimal coupling of a massive self-interacting scalar field with a gravitational field is studied. Spontaneous symmetry breaking occurs in the open universe even when the sign on the mass term is positive. In contrast to grand unified theories, symmetry breakdown is more important for the early universe and it is restored only in the limit of an infinite expansion. Symmetry breakdown is shown to occur in flat and closed universes when the mass term carries a wrong sign. The model has a naturally defined effective gravitational coupling coefficient which is rendered time-dependent due to the novel symmetry breakdown. It changes sign below a critical value of the cosmic scale factor indicating the onset of a repulsive field. The presence of the mass term severely alters the behaviour of ordinary matter and radiation in the early universe. The total energy density becomes negative in a certain domain. These features make possible a nonsingular cosm
Resumo:
The biosynthetic pathway of Sulfoquinovosyldiacylglycerol (SQDG) was investigated using groundnut (Arachis hypogaea) leaf discs and 35S-labeled precursors. [35S]SO2−4 was actively taken up by the leaf discs and rapidly incorporated into SQDG. After 2 h, 1.5% of the [35S]SO2−4 added to the incubation medium was taken up, of which 28% was incorporated into SQDG. The methanol-water phases of the lipid extracts of the leaf discs were analyzed for the 35S-labeled intermediates. Up to 2 h of incubation, cysteic acid, 3-sulfopyruvate, 3-sulfolactate, 3-sulfolactaldehyde, and sulfoquinovose (SQ) which have been proposed as intermediates [Davies et al. (1966) Biochem. J. 98, 369–373] were not labeled. Only a negligible amount of radioactivity was observed in these compounds after incubation for 4 h and more. Addition of sodium molybdate inhibited the uptake of [35S]SO2−4 as well as its incorporation into SQDG by the leaf discs, suggesting that 3′-phosphoadenosine-5′-phosphosulfate may be involved in the biosynthesis of SQDG. Addition of unlabeled cysteic acid to the incubation medium enhanced the uptake of [35S]SO2−4 but did not affect its incorporation into SQDG. 35S-labeled cysteic acid was taken up by the leaf discs and metabolized to sulfoacetic acid but not incorporated into SQ or SQDG. These results show that cysteic acid is not an intermediate in SQDG biosynthesis. [35S]SQ was taken up by the leaf discs and incorporated into SQDG in a time-dependent manner. [35S]Sulfoquinovosylglycerol was also taken up by the leaf discs but not incorporated into SQDG. It is concluded that SQDG is not biosynthesized by the proposed sulfoglycolytic pathway in higher plants. Though [35S]SQ was converted to SQDG, the rates are much lower compared to [35S]SO2−4 incorporation, which suggests that a more direct pathway involving sulfonation of a lipid precursor may exist in higher plants.
Resumo:
Unsteady laminar compressible boundary-layer flow with variable properties at a three-dimensional stagnation point for both cold and hot walls has been studied for the case when the velocity of the incident stream varies arbitrarily with time. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for two particular unsteady free-stream velocity distributions: (i) an accelerating stream and (ii) a fluctuating stream. The results indicate that the variation of the density-viscosity product across the boundary layer, the wall temperature and the nature of stagnation point significantly affect the skin friction and heat transfer.
Resumo:
Biochemical, histopathological and ultrastructural changes occurring at different time points after intraperitoneal administration of a single dose of pulegone (300 mg/kg) were studied. Significant decreases in the level of liver microsomal cytochrome P-450 (67%), heme (37%), aminopyrine N-demethylase (60%) and glucose-6-phosphatase (58%), were noticed 24 hr after pulegone treatment. Alanine amino transferase (ALT) levels increased in a time dependent manner, following exposure of rats to pulegone. Light microscopic studies of liver tissues showed dilation of central veins and distention of sinusoidal spaces 6 hr after pulegone treatment. Initial centrilobular necrosis was noticed at 12 hr. Centrilobular necrosis became severe at 18 hr and nuclear changes included karyorrhexis and karyolysis. Midzonal and periportal degenerative changes in addition to centrilobular necrosis was observed 24 hr after pulegone administration. Electron microscopic changes showed severe degeneration of endoplasmic reticulum, swelling of mitochondria and nuclear changes, 24 hr after administration of pulegone. The time course profile of the hepatocytes after treatment with pulegone indicates that endoplasmic reticulum is the organelle most affected, following which other degenerative changes occur ultimately leading to cell death.
Resumo:
Significant destruction (68%) of liver microsomal cytochrome P-450 and homogeneous cytochrome P-450 purified from PB-treated rats is noticed upon incubation with 10 mM pulegone at 37-degrees-C for 30 min. There is also a concomitant loss of heme. The destructive phenomenon does not require metabolic activation of pulegone. The destruction of purified cytochrome P-450 is time-dependent and saturable. Structure-activity studies suggest that an alpha-isopropylidine ketone unit with a methyl positioned para to the isopropylidine group as in pulegone is necessary for the in vitro destruction of cytochrome P-450. SKF-525A at a concentration of 4-mM obliterates the destruction of cytochrome P-450 by pulegone. Experiments with C-14-pulegone suggest that pulegone or its rearranged product binds covalently to the prosthetic heme of cytochrome P-450.
Resumo:
The role of imposed strain on the room temperature time-dependent deformation behavior of bulk metallic glasses (BMGs) was systematically investigated through spherical nanoindentation creep experiments. The results show that creep occurred even at very low strains within elastic regimes and, interestingly, a precipitous increase in creep rate was found in plastic regimes, with BMG that had a higher free volume exhibiting greater creep rates. The results are discussed in terms of prevailing mechanisms of elastic/plastic deformation of amorphous alloys. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
An exact solution to the problem of time-dependent motion of a viscous fluid in an annulus with porous walls is obtained under the assumption that the rate of suction at one wall is equal to the rate of injection at the other. Finite Hankel transform is used to obtain a closed-form solution for the axial velocity. The average axial velocity profiles are depicted graphically.
Resumo:
The general time dependent source problem has been solved by the method of transforms (Laplace, Lebedev–Kontorovich in succession) and the solution is obtained in the form of an infinite series involving Legendre functions. The solutions in the case of harmonic time dependence and the incident plane wave have been derived from the above solution and are presented in the form of an infinite series. In the case of an incident plane wave, the series has been summed and the final solution involves an improper integral which behaves like a complementary error function for large values of the argument. Finally, the far field evaluation has been shown. The results are compared with those of Sommerfeld's half-plane diffraction problem with unmixed boundary conditions.
Resumo:
This work offers a method for finding some exact soliton solutions to coupled relativistic scalar field theories in 1+1 dimensions. The method can yield static solutions as well as quasistatic "charged" solutions for a variety of Lagrangians. Explicit solutions are derived as examples. A particularly interesting class of solutions is nontopological without being either charged or time dependent.
Resumo:
The physical properties of surface soil horizons, essentially pore size, shape, continuity and affinity for water, regulate water entry into the soil. These properties are prone to changes caused by natural forces and human activity. The hydraulic properties of the surface soil greatly impact the generation of surface runoff and accompanied erosion, the major concern of agricultural water protection. The general target of this thesis was to improve our understanding of the structural and hydraulic properties of boreal clay soils. Physical properties of a clayey surface soil (0 - 10 cm, clay content 51%), with a micaceous/illitic mineralogy subjected to three different management practices of perennial vegetation, were studied. The study sites were vegetated buffer zones located side by side in SW Finland: 1) natural vegetation with no management, 2) harvested once a year, and 3) grazed by cattle. The soil structure, hydraulic properties, shrinkage properties and soil water repellency were determined at all sites. Two distinct flow domains were evident. The surface soil was characterized by subangular blocky, angular blocky and platy aggregates. Hence, large, partially accommodated, irregular elongated pores dominated the macropore domain at all sites. The intra-aggregate pore system was mostly comprised of pores smaller than 30 μm, which are responsible for water storage. Macropores at the grazed site, compacted by hoof pressure, were horizontally oriented and pore connectivity was poorest, which decreased water and air flux compared with other sites. Drying of the soil greatly altered its structure. The decrease in soil volume between wet and dry soil was 7 - 10%, most of which occurred in the moisture range of field conditions. Structural changes, including irreversible collapse of interaggregate pores, began at matric potentials around -6 kPa indicating, instability of soil structure against increasing hydraulic stress. Water saturation and several freezethaw cycles between autumn and spring likely weakened the soil structure. Soil water repellency was observed at all sites at the time of sampling and when soil was dryer than about 40 vol.%. (matric potential < -6 kPa). Therefore, water repellency contributes to water flow over a wide moisture range. Water repellency was also observed in soils with low organic carbon content (< 2%), which suggests that this phenomenon is common in agricultural soils of Finland due to their relatively high organic carbon content. Aggregate-related pedofeatures of dense infillings described as clay intrusions were found at all sites. The formation of these intrusions was attributed to clay dispersion and/or translocation during spring thaw and drying of the suspension in situ. These processes generate very new aggregates whose physical properties are most probably different from those of the bulk soil aggregates. Formation of the clay infillings suggested that prolonged wetness in autumn and spring impairs soil structure due to clay dispersion, while on the other hand it contributes to the pedogenesis of the soil. The results emphasize the dynamic nature of the physical properties of clay soils, essentially driven by their moisture state. In a dry soil, fast preferential flow is favoured by abundant macropores including shrinkage cracks and is further enhanced by water repellency. Increase in soil moisture reduces water repellency, and swelling of accommodated pores lowers the saturated hydraulic conductivity. Moisture- and temperature-related processes significantly alter soil structure over a time span of 1 yr. Thus, the pore characteristics as well as the hydraulic properties of soil are time-dependent.
Resumo:
We report the results of a comprehensive study on dc magnetization, ac susceptibility, and the magnetotransport properties of the La1-xSrxCoO3(0 <= x <= 0.5) system. At higher Sr doping (x >= 0.18), the system exhibits Brillouin-like field cooled magnetization (M-FC). However, for x < 0.18, the system exhibits a kink in the M-FC, a peak at the intermediate field in the thermoremnant magnetization and a non-saturating tendency in the M-H plot that all point towards the characteristic of spin glass behavior. More interestingly, dc magnetization studies for x < 0.18 do not suggest the existence of ferromagnetic correlation that can give rise to an irreversible line in the spin glass regime. The ac susceptibility study for x > 0.2 exhibits apparently no frequency dependent peak shift around the ferromagnetic transition region. However, a feeble signature of glassiness is verified by studying the frequency dependent shoulder position in chi `' (T) and the memory effect below the Curie temperature. But, for x < 0.18, the ac susceptibility study exhibits a considerable frequency dependent peak shift, time dependent memory effect, and the characteristic spin relaxation time scale tau(0) similar to 10(-13) s. The reciprocal susceptibility versus temperature plot adheres to Curie-Weiss behavior and does not provide any signature of preformed ferromagnetic clusters well above the Curie temperature. The magnetotransport study reveals a cross over from metallic to semiconducting-like behavior for x <= 0.18. On the semiconducting side, the system exhibits a large value of magnetoresistance (upto 75%) towards low temperature and it is strongly connected to the spin dependent part of the random potential distribution in the spin glass phase. Based on the above observations, we have reconstructed a new magnetic phase diagram and characterized each phase with associated properties.
Resumo:
An integrodifferential formulation for the equation governing the Alfvén waves in inhomogeneous magnetic fields is shown to be similar to the polyvibrating equation of Mangeron. Exploiting this similarity, a time‐dependent solution for smooth initial conditions is constructed. The important feature of this solution is that it separates the parts giving the Alfvén wave oscillations of each layer of plasma and the interaction of these oscillations representing the phase mixing.
Resumo:
A direct transform technique is applied to the initial and boundary value problem involving diffraction of a cylindrical pulse by a half plane, on which impedance type of boundary conditions must be met by the total field. The solution to the time harmonic incident plane wave is deduced as a particular case of the general time-dependent problem considered here and we avoid the Wiener–Hopf technique which leads to very complicated factorization and which masks the role of the impedance factor Z′ (a small quantity) in the expression for the scattered field.