942 resultados para Three-dimensional Image
Resumo:
Vision extracts useful information from images. Reconstructing the three-dimensional structure of our environment and recognizing the objects that populate it are among the most important functions of our visual system. Computer vision researchers study the computational principles of vision and aim at designing algorithms that reproduce these functions. Vision is difficult: the same scene may give rise to very different images depending on illumination and viewpoint. Typically, an astronomical number of hypotheses exist that in principle have to be analyzed to infer a correct scene description. Moreover, image information might be extracted at different levels of spatial and logical resolution dependent on the image processing task. Knowledge of the world allows the visual system to limit the amount of ambiguity and to greatly simplify visual computations. We discuss how simple properties of the world are captured by the Gestalt rules of grouping, how the visual system may learn and organize models of objects for recognition, and how one may control the complexity of the description that the visual system computes.
Resumo:
Falls are one of the greatest threats to elderly health in their daily living routines and activities. Therefore, it is very important to detect falls of an elderly in a timely and accurate manner, so that immediate response and proper care can be provided, by sending fall alarms to caregivers. Radar is an effective non-intrusive sensing modality which is well suited for this purpose, which can detect human motions in all types of environments, penetrate walls and fabrics, preserve privacy, and is insensitive to lighting conditions. Micro-Doppler features are utilized in radar signal corresponding to human body motions and gait to detect falls using a narrowband pulse-Doppler radar. Human motions cause time-varying Doppler signatures, which are analyzed using time-frequency representations and matching pursuit decomposition (MPD) for feature extraction and fall detection. The extracted features include MPD features and the principal components of the time-frequency signal representations. To analyze the sequential characteristics of typical falls, the extracted features are used for training and testing hidden Markov models (HMM) in different falling scenarios. Experimental results demonstrate that the proposed algorithm and method achieve fast and accurate fall detections. The risk of falls increases sharply when the elderly or patients try to exit beds. Thus, if a bed exit can be detected at an early stage of this motion, the related injuries can be prevented with a high probability. To detect bed exit for fall prevention, the trajectory of head movements is used for recognize such human motion. A head detector is trained using the histogram of oriented gradient (HOG) features of the head and shoulder areas from recorded bed exit images. A data association algorithm is applied on the head detection results to eliminate head detection false alarms. Then the three dimensional (3D) head trajectories are constructed by matching scale-invariant feature transform (SIFT) keypoints in the detected head areas from both the left and right stereo images. The extracted 3D head trajectories are used for training and testing an HMM based classifier for recognizing bed exit activities. The results of the classifier are presented and discussed in the thesis, which demonstrates the effectiveness of the proposed stereo vision based bed exit detection approach.
Resumo:
A phantom that can be used for mapping geometric distortion in magnetic resonance imaging (MRI) is described. This phantom provides an array of densely distributed control points in three-dimensional (3D) space. These points form the basis of a comprehensive measurement method to correct for geometric distortion in MR images arising principally from gradient field non-linearity and magnet field inhomogeneity. The phantom was designed based on the concept that a point in space can be defined using three orthogonal planes. This novel design approach allows for as many control points as desired. Employing this novel design, a highly accurate method has been developed that enables the positions of the control points to be measured to sub-voxel accuracy. The phantom described in this paper was constructed to fit into a body coil of a MRI scanner, (external dimensions of the phantom were: 310 mm x 310 mm x 310 mm), and it contained 10,830 control points. With this phantom, the mean errors in the measured coordinates of the control points were on the order of 0.1 mm or less, which were less than one tenth of the voxel's dimensions of the phantom image. The calculated three-dimensional distortion map, i.e., the differences between the image positions and true positions of the control points, can then be used to compensate for geometric distortion for a full image restoration. It is anticipated that this novel method will have an impact on the applicability of MRI in both clinical and research settings. especially in areas where geometric accuracy is highly required, such as in MR neuro-imaging. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In magnetic resonance imaging (MRI), the MR signal intensity can vary spatially and this spatial variation is usually referred to as MR intensity nonuniformity. Although the main source of intensity nonuniformity arises from B, inhomogeneity of the coil acting as a receiver and/or transmitter, geometric distortion also alters the MR signal intensity. It is useful on some occasions to have these two different sources be separately measured and analyzed. In this paper, we present a practical method for a detailed measurement of the MR intensity nonuniformity. This method is based on the same three-dimensional geometric phantom that was recently developed for a complete measurement of the geometric distortion in MR systems. In this paper, the contribution to the intensity nonuniformity from the geometric distortion can be estimated and thus, it provides a mechanism for estimation of the intensity nonuniformity that reflects solely the spatial characteristics arising from B-1. Additionally, a comprehensive scheme for characterization of the intensity nonuniformity based on the new measurement method is proposed. To demonstrate the method, the intensity nonuniformity in a 1.5 T Sonata MR system was measured and is used to illustrate the main features of the method. (c) 2005 American Association of Physicists in Medicine.
Resumo:
Full-field Fourier-domain optical coherence tomography (3F-OCT) is a full-field version of spectral domain/swept source optical coherence tomography. A set of two-dimensional Fourier holograms is recorded at discrete wavenumbers spanning the swept source tuning range. The resultant three-dimensional data cube contains comprehensive information on the three-dimensional spatial properties of the sample, including its morphological layout and optical scatter. The morphological layout can be reconstructed in software via three-dimensional discrete Fourier transformation. The spatial resolution of the 3F-OCT reconstructed image, however, is degraded due to the presence of a phase cross-term, whose origin and effects are addressed in this paper. We present a theoretical and experimental study of the imaging performance of 3F-OCT, with particular emphasis on elimination of the deleterious effects of the phase cross-term.
Resumo:
OBJECTIVES: Due to the high prevalence of renal failure in transcatheter aortic valve replacement (TAVR) candidates, a non-contrast MR technique is desirable for pre-procedural planning. We sought to evaluate the feasibility of a novel, non-contrast, free-breathing, self-navigated three-dimensional (SN3D) MR sequence for imaging the aorta from its root to the iliofemoral run-off in comparison to non-contrast two-dimensional-balanced steady-state free-precession (2D-bSSFP) imaging. METHODS: SN3D [field of view (FOV), 220-370 mm(3); slice thickness, 1.15 mm; repetition/echo time (TR/TE), 3.1/1.5 ms; and flip angle, 115°] and 2D-bSSFP acquisitions (FOV, 340 mm; slice thickness, 6 mm; TR/TE, 2.3/1.1 ms; flip angle, 77°) were performed in 10 healthy subjects (all male; mean age, 30.3 ± 4.3 yrs) using a 1.5-T MRI system. Aortic root measurements and qualitative image ratings (four-point Likert-scale) were compared. RESULTS: The mean effective aortic annulus diameter was similar for 2D-bSSFP and SN3D (26.7 ± 0.7 vs. 26.1 ± 0.9 mm, p = 0.23). The mean image quality of 2D-bSSFP (4; IQR 3-4) was rated slightly higher (p = 0.03) than SN3D (3; IQR 2-4). The mean total acquisition time for SN3D imaging was 12.8 ± 2.4 min. CONCLUSIONS: Our results suggest that a novel SN3D sequence allows rapid, free-breathing assessment of the aortic root and the aortoiliofemoral system without administration of contrast medium. KEY POINTS: • The prevalence of renal failure is high among TAVR candidates. • Non-contrast 3D MR angiography allows for TAVR procedure planning. • The self-navigated sequence provides a significantly reduced scanning time.
Resumo:
PURPOSE: The goal of the present study was to use a three-dimensional (3D) gradient echo volume in combination with a fat-selective excitation as a 3D motion navigator (3D FatNav) for retrospective correction of microscopic head motion during high-resolution 3D structural scans of extended duration. The fat excitation leads to a 3D image that is itself sparse, allowing high parallel imaging acceleration factors - with the additional advantage of a minimal disturbance of the water signal used for the host sequence. METHODS: A 3D FatNav was inserted into two structural protocols: an inversion-prepared gradient echo at 0.33 × 0.33 × 1.00 mm resolution and a turbo spin echo at 600 μm isotropic resolution. RESULTS: Motion estimation was possible with high precision, allowing retrospective motion correction to yield clear improvements in image quality, especially in the conspicuity of very small blood vessels. CONCLUSION: The highly accelerated 3D FatNav allowed motion correction with noticeable improvements in image quality, even for head motion which was small compared with the voxel dimensions of the host sequence. Magn Reson Med 75:1030-1039, 2016. © 2015 Wiley Periodicals, Inc.
Resumo:
This study was designed to evaluate the correlation between computed tomography findings and data from the physical examination and the Friedman Staging System (FSS) in patients with obstructive sleep apnea (OSA). We performed a retrospective evaluation by reviewing the medical records of 33 patients (19 male and 14 female patients) with a mean body mass index of 30.38 kg/m(2) and mean age of 49.35 years. Among these patients, 14 presented with severe OSA, 7 had moderate OSA, 7 had mild OSA, and 5 were healthy. The patients were divided into 2 groups according to the FSS: Group A comprised patients with FSS stage I or II, and group B comprised patients with FSS stage III. By use of the Fisher exact test, a positive relationship between the FSS stage and apnea-hypopnea index (P = .011) and between the FSS stage and body mass index (P = .012) was found. There was no correlation between age (P = .55) and gender (P = .53) with the FSS stage. The analysis of variance test comparing the upper airway volume between the 2 groups showed P = .018. In this sample the FSS and upper airway volume showed an inverse correlation and were useful in analyzing the mechanisms of airway collapse in patients with OSA.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
This paper presents a, simple two dimensional frame formulation to deal with structures undergoing large motions due to dynamic actions including very thin inflatable structures, balloons. The proposed methodology is based on the minimum potential energy theorem written regarding nodal positions. Velocity, acceleration and strain are achieved directly from positions, not. displacements, characterizing the novelty of the proposed technique. A non-dimensional space is created and the deformation function (change of configuration) is written following two independent mappings from which the strain energy function is written. The classical New-mark equations are used to integrate time. Dumping and non-conservative forces are introduced into the mechanical system by a rheonomic energy function. The final formulation has the advantage of being simple and easy to teach, when compared to classical Counterparts. The behavior of a bench-mark problem (spin-up maneuver) is solved to prove the formulation regarding high circumferential speed applications. Other examples are dedicated to inflatable and very thin structures, in order to test the formulation for further analysis of three dimensional balloons.
Resumo:
Three-dimensional spectroscopy techniques are becoming more and more popular, producing an increasing number of large data cubes. The challenge of extracting information from these cubes requires the development of new techniques for data processing and analysis. We apply the recently developed technique of principal component analysis (PCA) tomography to a data cube from the center of the elliptical galaxy NGC 7097 and show that this technique is effective in decomposing the data into physically interpretable information. We find that the first five principal components of our data are associated with distinct physical characteristics. In particular, we detect a low-ionization nuclear-emitting region (LINER) with a weak broad component in the Balmer lines. Two images of the LINER are present in our data, one seen through a disk of gas and dust, and the other after scattering by free electrons and/or dust particles in the ionization cone. Furthermore, we extract the spectrum of the LINER, decontaminated from stellar and extended nebular emission, using only the technique of PCA tomography. We anticipate that the scattered image has polarized light due to its scattered nature.
Resumo:
Defects in one-dimensional (1D) systems can be intrinsically distinct from its three-dimensional counterparts, and polymer films are good candidates for showing both extremes that are difficult to individuate in the experimental data. We study theoretically the impact of simple hydrogen and oxygen defects on the electron transport properties of one-dimensional poly(para-phenylenevinylene) chains through a multiscale technique, starting from classical structural simulations for crystalline films to extensive ab initio calculations within density functional theory for the defects in single crystalline-constrained chains. The most disruptive effect on carrier transport comes from conjugation breaking imposed by the overcoordination of a carbon atom in the vinyl group independently from the chemical nature of the defect. The particular case of the [C=O] (keto-defect) shows in addition unexpected electron-hole separation, suggesting that the experimentally detected photoluminescence bleaching and photoconductivity enhancement could be due to exciton dissociation caused by the 1D characteristics of the defect.