953 resultados para Temperature-dependent Sex Determination
Resumo:
We identified a transcript named 11M2 on the basis of its strong male-specific expression pattern in the developing mouse gonad. 11M2 was found to be expressed by gonad primordial germ cells (PGCs) of both sexes and down-regulated in female PGCs as they enter prophase I of the first meiotic division, similar to the expression of Oct4. Mouse EST analysis revealed expression only in early-stage embryos, embryonic stem cells and pre-meiotic germ cells. 11M2 corresponds to a recently reported gene variously known as PGC7, stella or Dppa3. We have identified the human orthologue of Dppa3 and find by human EST analysis that it is expressed in human testicular germ cell tumours but not in normal human somatic tissues. The expression patterns of mouse and human DPPA3, in undifferentiated embryonic cells, embryonic germ cells and adult germ cell tumours, together suggest a role for this gene in maintaining cell pluripotentiality.
Resumo:
Sox8 is a member of the Sox family of developmental transcription factor genes and is closely related to Sox9, a critical gene involved in mammalian sex determination and differentiation. Both genes encode proteins with the ability to bind similar DNA target sequences, and to activate transcription in in vitro assays. Expression studies indicate that the two genes have largely overlapping patterns of activity during mammalian embryonic development. A knockout of Sox8 in mice has no obvious developmental phenotype, suggesting that the two genes are able to act redundantly in a variety of developmental contexts. In particular, both genes are expressed in the developing Sertoli cell lineage of the developing testes in mice, and both proteins are able to activate transcription of the gene encoding anti-Mullerian hormone (AMH), through synergistic action with steroidogenic factor I (SF1). We have hypothesized that Sox8 may substitute for Sox9 in species where Sox9 is expressed too late to be involved in sex determination or regulation of Amh expression. However, our studies involving the red-eared slider turtle indicate that Sox8 is expressed at similar levels in males and females throughout the sex-determining period, suggesting that Sox8 is neither a transcriptional regulator for Amh, nor responsible for sex determination or gonad differentiation in that species. Similarly, Sox8 is not expressed in a sexually dimorphic pattern during gonadogenesis in the chicken. Since a functional role(s) for Sox8 is implied by its conservation during evolution, the significance of Sox8 for sexual and other aspects of development will need to be uncovered through more directed lines of experimentation. Copyright (C) 2003 S. Karger AG, Basel.
Resumo:
In recent years, strategies for gene identification based on differential gene expression have become increasingly popular, due in part to the development of microarray technology. These strategies are particularly well suited to the identification of genes involved in sex determination and gonadal development, which unlike the development of other organ systems, proceeds along two very different alternative courses, depending on the sex of the embryo. We have used a high-throughput, array-based expression screen to identify several genes expressed sex-specifically in developing mouse gonads. One of these, vanin 1, appears to play a role in mediating migration of mesonephric cells into the male genital ridge. Progress in characterizing other genes arising from the screen is discussed.
Resumo:
The Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)](ClO) has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S = 0) and high-spin (S = 2) states. Temperaturedependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with T(?) = 223 and T(?) = 213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below T. The present study reveals an increase in high-spin fraction upon heating in the temperature range below T, and an explanation is provided.
Resumo:
Measurements were carried out to determine local coefficients of heat transfer in short lengths of horizontal pipe, and in the region of an discontinuity in pipe diameter. Laminar, transitional and turbulent flow regimes were investigated, and mixtures of propylene glycol and water were used in the experiments to give a range of viscous fluids. Theoretical and empirical analyses were implemented to find how the fundamental mechanism of forced convection was modified by the secondary effects of free convection, temperature dependent viscosity, and viscous dissipation. From experiments with the short tube it was possible to determine simple empirical relationships describing the axial distribution of the local 1usselt number and its dependence on the Reynolds and Prandtl numbers. Small corrections were made to account for the secondary effects mentioned above. Two different entrance configurations were investigated to demonstrate how conditions upstream could influence the heat transfer coefficients measured downstream In experiments with a sudden contraction in pipe diameter the distribution of local 1u3se1t number depended on the Prandtl number of the fluid in a complicated way. Graphical data is presented describing this dependence for a range of fluids indicating how the local Nusselt number varied with the diameter-ratio. Ratios up to 3.34:1 were considered. With a sudden divergence in pipe diameter, it was possible to derive the axial distribution of the local Nusse1t number for a range of Reynolds and Prandtl numbers in a similar way to the convergence experiments. Difficulty was encountered in explaining some of the measurements obtained at low Reynolds numbers, and flow visualization techniques wore used to determine the complex flow patterns which could lead to the anomalous results mentioned. Tests were carried out with divergences up to 1:3.34 to find the way in which the local Nusselt number varied with the diameter ratio, and a few experiments were carried out with very large ratios up .to 14.4. A limited amount of theoretical analysis of the 'divergence' system was carried out to substantiate certain explanations of the heat transfer mechanisms postulated.
Resumo:
This thesis describes an industrial research project carried out in collaboration with STC Components, Harlow, Essex. Technical and market trends in the use of surface acoustic wave (SAW) devices are reviewed. As a result, three areas not previously addressed by STC were identified: lower insertion loss designs, higher operating frequencies and improved temperature dependent stability. A review of the temperature performance of alternative lower insertion loss designs,shows that greater use could be made of the on-site quartz growing plant. Data is presented for quartz cuts in the ST-AT range. This data is used to modify the temperature performance of a SAW filter. Several recently identified quartz orientations have been tested. These are SST, LST and X33. Problems associated with each cut are described and devices demonstrated. LST quartz, although sensitive to accuracy of cut, is shown to have an improved temperature coefficient over the normal ST orientation. Results show that its use is restricted due to insertion loss variations with temperature. Effects associated with split-finger transducers on LST-quartz are described. Two low-loss options are studied, coupled resonator filters for very narrow bandwidth applications and single phase unidirectional transducers (SPUDT) for fractional bandwidths up to about 1%. Both designs can be implemented with one quarter wavelength transducer geometries at operating frequencies up to 1GHz. The SPUDT design utilised an existing impulse response model to provide analysis of ladder or rung transducers. A coupled resonator filter at 400MHz is demonstrated with a matched insertion loss of less than 3.5dB and bandwidth of 0.05%. A SPUDT device is designed as a re-timing filter for timing extraction in a long haul PCM transmission system. Filters operating at 565MHz are demonstrated with insertion losses of less than 6dB. This basic SPUDT design is extended to a maximally distributed version and demonstrated at 450MHz with 9.8dB insertion loss.
Resumo:
The literature relating to the drying characteristics of pure liquid drops and particulate slurry drops has been reviewed. The experimental investigation was, therefore, divided into three parts: Pure water drops, Aqueous sodium sulphate decahydrate drops, and, Slurry drops from nine detergent formulations. The value of the constant,'Ψ, reported by Ranz and Marshall, was found to be temperature dependent. In the temperature range o 26.5≤T≤118.5°C,Ψ , for pure water drops, varied between 0.38 and 0.47. A revised correlation of the mass transfer coefficients is therefore proposed. A mathematical model for estimating the variation of crust thickness, for aqueous sodium sulphate drops, with time is proposed: β = R _ {R3 - ( 1.5G/πCo ) ( ΔHD - ΔHU) Δ} 1/3 Experimental crust thickness evaluated from stereoscan micrographs showed good agreement with theoretical prediction. It has been shown that drying characteristics of detergent drops can be evaluated from the porosity:thickness ratio, {ε/\β}. Formulations having large {ε/β I-ratios dry better than those with smaller values. The agreement between the experimental and theoretical mass transfer coefficients shows, in addition to the above correlation, that the overall mass transfer coefficient can be predicted from the expression1/K = 1/K + β/DMε 1.5 The crust is the controlling resistance to transfer in particulate slurry drops. For aqueous sodium sulphate drops, the crust provides 64.2% of the total resistance while for detergents with thicker, but less porous crusts, the value is 97.5%.
Resumo:
Metallocene catalyzed linear low density polyethylene (m-LLDPE) is a new generation of olefin copolymer. Based on the more recently developed metallocene-type catalysts, m-LLDPE can be synthesized with exactly controlled short chain branches and stereo-regular microstructure. The unique properties of these polymers have led to their applications in many areas. As a result, it is important to have a good understanding of the oxidation mechanism of m-LLDPE during melt processing in order to develop more effective stabilisation systems and continue to increase the performance of the material. The primary objectives of this work were, firstly, to investigate the oxidative degradation mechanisms of m-LLDPE polymers having different comonomer (I-octene) content during melt processing. Secondly, to examine the effectiveness of some commercial antioxidants on the stabilisation of m-LLDPE melt. A Ziegler-polymerized LLDPE (z-LLDPE) based on the same comonomer was chosen and processed under the same conditions for comparison with the metallocene polymers. The LLDPE polymers were processed using an internal mixer (torque rheometer, TR) and a co-rotating twin-screw extruder (TSE). The effects of processing variables (time, temperature) on the rheological (MI, MWD, rheometry) and molecular (unsaturation type and content, carbonyl compounds, chain branching) characteristics of the processed polymers were examined. It was found that the catalyst type (metallocene or Ziegler) and comonomer content of the polymers have great impact on their oxidative degradation behavior (crosslinking or chain scission) during melt processing. The metallocene polymers mainly underwent chain scission at lower temperature (<220°C) but crosslinking became predominant at higher temperature for both TR and TSE processed polymers. Generally, the more comonomers the m-LLDPE contains, a larger extent of chain scission can be expected. In contrast, crosslinking reactions were shown to be always dominant in the case of the Ziegler LLDPE. Furthermore, it is clear that the molecular weight distribution (MWD) of all LLDPE became broader after processing and tended generally to be broader at elevated temperatures and more extrusion passes. So, it can be concluded that crosslinking and chain scission are temperature dependent and occur simultaneously as competing reactions during melt processing. Vinyl is considered to be the most important unsaturated group leading to polymer crosslinking as its concentration in all the LLDPE decreased after processing. Carbonyl compounds were produced during LLDPE melt processing and ketones were shown to be the most imp0l1ant carbonyl-containing products in all processed polymers. The carbonyl concentration generally increased with temperature and extrusion passes, and the higher carbonyl content fonned in processed z-LLDPE and m-LLDPE polymers having higher comonomer content indicates their higher susceptibility of oxidative degradation. Hindered phenol and lactone antioxidants were shown to be effective in the stabilization of m-LLDPE melt when they were singly used in TSE extrusion. The combination of hindered phenol and phosphite has synergistic effect on m-LLDPE stabilization and the phenol-phosphite-Iactone mixture imparted the polymers with good stability during extrusion, especially for m-LLDPE with higher comonomer content.
Resumo:
Glioblastoma multiforme (GBM) is a malignant brain tumour for which there is currently no effective treatment regime. It is thought to develop due to the overexpression of a number of genes, including the epidermal growth factor receptor (EGFR), which is found in over 40% of GBM. Novel forms of treatment such as antisense therapy may allow for the specific inhibition of aberrant genes and thus they are optimistic therapies for future treatment of GBM. Oligodeoxynucleotides (ODNs) are small pieces of DNA that are often modified to increase their stability to nucleases and can be targeted to the aberrant gene in order to inhibit it and thus prevent its transcription into protein. By specifically binding to mRNA in an antisense manner, they can bring about its degradation by a variety of mechanisms including the activation of RNase H and thus have great potential as therapeutic agents. One of the main drawbacks to the utilisation of this therapy so far is the lack of techniques that can successfully predict accessible regions on the target mRNA that the ODNs can bind to. DNA chip technology has been utilised here to predict target sequences on the EGFR mRNA and these ODNs (AS 1 and AS2) have been tested in vitro for their stability, uptake into cells and their efficacy on cellular growth, EGFR protein and mRNA. Studies showed that phosphorothioate and 2'O-methyl ODNs were significantly more stable than phosphodiester ODNs both in serum and serum-free conditions and that the mechanism of uptake into A431 cells was temperature dependent and more efficient with the use of optimised lipofectin. Efficacy results show that AS 1 and AS2 phosphorothioate antisense ODNs were capable of inhibiting cell proliferation by 69% ±4% and 65% ±4.5% respectively at 500nM in conjunction with a non-toxic dose of lipofectinTM used to enhance cellular delivery. Furthermore, control ODN sequences, 2' O-methyl derivatives and a third ODN sequence, that was found not to be capable of binding efficiently to the EGFR mRNA by DNA chip technology, showed no significant effect on cell proliferation. AS 1 almost completely inhibited EGFR protein levels within 48 hours with two doses of 500nM AS 1 with no effect on other EGFR family member proteins or by control sequences. RNA analysis showed a decrease in mRNA levels of 32.4% ±0.8% but techniques require further optimisation to confirm this. As there are variations found between human glioblastoma in situ and those developed as xenografts, analysis of effect of AS 1 and AS2 was performed on primary tumour cell lines derived from glioma patients. ODN treatment showed a specific knockdown of cell growth compared to any of the controls used. Furthermore, combination therapies were tested on A431 cell growth to determine the advantage of combining different antisense approaches and that of conventional drugs. Results varied between the combination treatments but indicated that with optimisation of treatment regimes and delivery techniques that combination therapies utilising antisense therapies would be plausible.
Resumo:
In this thesis the results of experimental work performed to determine local heat transfer coefficients for non-Newtonian fluids in laminar flow through pipes with abrupt discontinuities are reported. The fluids investigated were water-based polymeric solutiorrs of time-indpendent, pseudoplastic materials, with flow indices "n" ranging from 0.39 to 0.9.The tube configurations were a 3.3 :1 sudden convergence, and a 1: 3.3 sudden divergence.The condition of a prescribed uniform wall heat flux was considered, with both upstream and downstream tube sections heated. Radial temperature traverses were also under taken primarily to justify the procedures used in estimating the tube wall and bulk fluid temperatures and secondly to give further insight into the mechanism of heat transfer beyond a sudden tube expansion. A theoretical assessment of the influence of viscous dissipation on a non-Newtonian pseudoplastic fluid of' arbitrary index "n" was carried out. The effects of other secondary factors such as free convection and temperature-dependent consistency were evaluated empirically. In the present investigations, the test conditions were chosen to minimise the effects of natural convection and the estimates of viscous heat generation showed the effect to be insignificant with the polymeric concentrations tested here. The final results have been presented as the relationships between local heat transfer coef'ficient and axial distance downstream of the discontinuities and relationships between dimensionless wall temperature and reduced radius. The influence of Reynolds number, Prandtl number, non-Newtonian index and heat flux have been indicated.