991 resultados para Talagrand Compact
Resumo:
Leiothrix is endemic of South America and includes 37 species, 25 of which occur in the state of Minas Gerais. Nineteen of those occur in the "Serra do Cipó", a mountain chain, located in the southern portion of the Espinhaço mountain range. This study examines vegetative propagation strategies of four species of Leiothrix, endemic to the Minas Gerais portion of the Espinhaço mountain range. For each species we established permanent plots, where we marked 30 to 51 rosettes or clones, and then took morphological and phenological measurements. Leiothrix crassifolia (Bong.) Ruhland and L. curvifolia var. lanuginosa (Bong.) Ruhland are rhizomatous, forming compact clones. Leiothrix vivipara (Bong.) Ruhland does not produce rhizomes, but is pseudoviviparous, i.e., produces numerous ramets originating from inflorescences. These ramets are formed precociously, and the flower heads do not touch the ground. In Leiothrix spiralis (Bong.) Ruhland both of these strategies are seen: it is both rhizomatous and pseudoviviparous. In this species, the ramets are formed late, only after the flower head has touched the ground. One of the typical conditions of the rupestrian grasslands is soil water shortage in some periods of the year and nutrient scarcity all year round. These conditions might have created an ideal ecological scenario for the evolution of both pseudovivipary and rhizomatous clonal growth in Leiothrix.
Resumo:
Initially identified as stress activated protein kinases (SAPKs), the c-Jun Nterminal kinases (JNKs) are currently accepted as potent regulators of various physiologically important cellular events. Named after their competence to phosphorylate transcription factor c-Jun in response to UVtreatment, JNKs play a key role in cell proliferation, cell death or cell migration. Interestingly, these functions are crucial for proper brain formation. The family consists of three JNK isoforms, JNK1, JNK2 and JNK3. Unlike brain specific JNK3 isoform, JNK1 and JNK2 are ubiquitously expressed. It is estimated that ten splice variants exist. However, the detailed cellular functions of these remain undetermined. In addition, physiological conditions keep the activities of JNK2 and JNK3 low in comparison with JNK1, whereas cellular stress raises the activity of these isoforms dramatically. Importantly, JNK1 activity is constitutively high in neurons, yet it does not stimulate cell death. This suggests a valuable role for JNK1 in brain development, but also as an important mediator of cell wellbeing. The aim of this thesis was to characterize the functional relationship between JNK1 and SCG10. We found that SCG10 is a bona fide target for JNK. By employing differential centrifugation we showed that SCG10 co-localized with active JNK, MKK7 and JIP1 in a fraction containing endosomes and Golgi vesicles. Investigation of JNK knockout tissues using phosphospecific antibodies recognizing JNK-specific phosphorylation sites on SCG10 (Ser 62/Ser 73) showed that phosphorylation of endogenous SCG10 was dramatically decreased in Jnk1-/- brains. Moreover, we found that JNK and SCG10 co-express during early embryonic days in brain regions that undergo extensive neuronal migration. Our study revealed that selective inhibition of JNK in the cytoplasm significantly increased both the frequency of exit from the multipolar stage and radial migration rate. However, as a consequence, it led to ill-defined cellular organization. Furthermore, we found that multipolar exit and radial migration in Jnk1 deficient mice can be connected to changes in phosphorylation state of SCG10. Also, the expression of a pseudo-phosphorylated mutant form of SCG10, mimicking the JNK1- phopshorylated form, brings migration rate back to normal in Jnk1 knockout mouse embryos. Furthermore, we investigated the role of SCG10 and JNK in regulation of Golgi apparatus (GA) biogenesis and whether pathological JNK action could be discernible by its deregulation. We found that SCG10 maintains GA integrity as with the absence of SCG10 neurons present more compact fragmented GA structure, as shown by the knockdown approach. Interestingly, neurons isolated from Jnk1-/- mice show similar characteristics. Block of ER to GA is believed to be involved in development of Parkinson's disease. Hence, by using a pharmacological approach (Brefeldin A treatment), we showed that GA recovery is delayed upon removal of the drug in Jnk1-/- neurons to an extent similar to the shRNA SCG10-treated cells. Finally, we investigated the role of the JNK1-SCG10 duo in the maintenance of GA biogenesis following excitotoxic insult. Although the GA underwent fragmentation in response to NMDA treatment, we observed a substantial delay in GA disintegration in neurons lacking either JNK1 or SCG10.
Resumo:
Electrokinetics has emerged as a potential technique for in situ soil remediation and especially unique because of the ability to work in low permeability soil. In electrokinetic remediation, non-polar contaminants like most organic compounds are transported primarily by electroosmosis, thus the process is effective only if the contaminants are soluble in pore fluid. Therefore, enhancement is needed to improve mobility of these hydrophobic compounds, which tend to adsorb strongly to the soil. On the other hand, as a novel and rapidly growing science, the applications of ultrasound in environmental technology hold a promising future. Compared to conventional methods, ultrasonication can bring several benefits such as environmental friendliness (no toxic chemical are used or produced), low cost, and compact instrumentation. It also can be applied onsite. Ultrasonic energy applied into contaminated soils can increase desorption and mobilization of contaminants and porosity and permeability of soil through developing of cavitation. The research investigated the coupling effect of the combination of these two techniques, electrokinetics and ultrasonication, in persistent organic pollutant removal from contaminated low permeability clayey soil (with kaolin as a model medium). The preliminary study checked feasibility of ultrasonic treatment of kaolin highly contaminated by persistent organic pollutants (POPs). The laboratory experiments were conducted in various conditions (moisture, frequency, power, duration time, initial concentration) to examine the effects of these parameters on the treatment process. Experimental results showed that ultrasonication has a potential to remove POPs, although the removal efficiencies were not high with short duration time. The study also suggested intermittent ultrasonication over longer time as an effective means to increase the removal efficiencies. Then, experiments were conducted to compare the performances among electrokinetic process alone and electrokinetic processes combined with surfactant addition and mainly with ultrasonication, in designed cylinders (with filtercloth separating central part and electrolyte parts) and in open pans. Combined electrokinetic and ultrasonic treatment did prove positive coupling effect compared to each single process alone, though the level of enhancement is not very significant. The assistance of ultrasound in electrokinetic remediation can help reduce POPs from clayey soil by improving the mobility of hydrophobic organic compounds and degrading these contaminants through pyrolysis and oxidation. Ultrasonication also sustains higher current and increases electroosmotic flow. Initial contaminant concentration is an essential input parameter that can affect the removal effectiveness.
Resumo:
In the design of electrical machines, efficiency improvements have become very important. However, there are at least two significant cases in which the compactness of electrical machines is critical and the tolerance of extremely high losses is valued: vehicle traction, where very high torque density is desired at least temporarily; and direct-drive wind turbine generators, whose mass should be acceptably low. As ever higher torque density and ever more compact electrical machines are developed for these purposes, thermal issues, i.e. avoidance of over-temperatures and damage in conditions of high heat losses, are becoming of utmost importance. The excessive temperatures of critical machine components, such as insulation and permanent magnets, easily cause failures of the whole electrical equipment. In electrical machines with excitation systems based on permanent magnets, special attention must be paid to the rotor temperature because of the temperature-sensitive properties of permanent magnets. The allowable temperature of NdFeB magnets is usually significantly less than 150 ˚C. The practical problem is that the part of the machine where the permanent magnets are located should stay cooler than the copper windings, which can easily tolerate temperatures of 155 ˚C or 180 ˚C. Therefore, new cooling solutions should be developed in order to cool permanent magnet electrical machines with high torque density and because of it with high concentrated losses in stators. In this doctoral dissertation, direct and indirect liquid cooling techniques for permanent magnet synchronous electrical machines (PMSM) with high torque density are presented and discussed. The aim of this research is to analyse thermal behaviours of the machines using the most applicable and accurate thermal analysis methods and to propose new, practical machine designs based on these analyses. The Computational Fluid Dynamics (CFD) thermal simulations of the heat transfer inside the machines and lumped parameter thermal network (LPTN) simulations both presented herein are used for the analyses. Detailed descriptions of the simulated thermal models are also presented. Most of the theoretical considerations and simulations have been verified via experimental measurements on a copper tooth-coil (motorette) and on various prototypes of electrical machines. The indirect liquid cooling systems of a 100 kW axial flux (AF) PMSM and a 110 kW radial flux (RF) PMSM are analysed here by means of simplified 3D CFD conjugate thermal models of the parts of both machines. In terms of results, a significant temperature drop of 40 ̊C in the stator winding and 28 ̊C in the rotor of the AF PMSM was achieved with the addition of highly thermally conductive materials into the machine: copper bars inserted in the teeth, and potting material around the end windings. In the RF PMSM, the potting material resulted in a temperature decrease of 6 ̊C in the stator winding, and in a decrease of 10 ̊C in the rotor embedded-permanentmagnets. Two types of unique direct liquid cooling systems for low power machines are analysed herein to demonstrate the effectiveness of the cooling systems in conditions of highly concentrated heat losses. LPTN analysis and CFD thermal analysis (the latter being particularly useful for unique design) were applied to simulate the temperature distribution within the machine models. Oil-immersion cooling provided good cooling capability for a 26.6 kW PMSM of a hybrid vehicle. A direct liquid cooling system for the copper winding with inner stainless steel tubes was designed for an 8 MW directdrive PM synchronous generator. The design principles of this cooling solution are described in detail in this thesis. The thermal analyses demonstrate that the stator winding and the rotor magnet temperatures are kept significantly below their critical temperatures with demineralized water flow. A comparison study of the coolant agents indicates that propylene glycol is more effective than ethylene glycol in arctic conditions.
Resumo:
In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.
Resumo:
Gasification of biomass is an efficient method process to produce liquid fuels, heat and electricity. It is interesting especially for the Nordic countries, where raw material for the processes is readily available. The thermal reactions of light hydrocarbons are a major challenge for industrial applications. At elevated temperatures, light hydrocarbons react spontaneously to form higher molecular weight compounds. In this thesis, this phenomenon was studied by literature survey, experimental work and modeling effort. The literature survey revealed that the change in tar composition is likely caused by the kinetic entropy. The role of the surface material is deemed to be an important factor in the reactivity of the system. The experimental results were in accordance with previous publications on the subject. The novelty of the experimental work lies in the used time interval for measurements combined with an industrially relevant temperature interval. The aspects which are covered in the modeling include screening of possible numerical approaches, testing of optimization methods and kinetic modelling. No significant numerical issues were observed, so the used calculation routines are adequate for the task. Evolutionary algorithms gave a better performance combined with better fit than the conventional iterative methods such as Simplex and Levenberg-Marquardt methods. Three models were fitted on experimental data. The LLNL model was used as a reference model to which two other models were compared. A compact model which included all the observed species was developed. The parameter estimation performed on that model gave slightly impaired fit to experimental data than LLNL model, but the difference was barely significant. The third tested model concentrated on the decomposition of hydrocarbons and included a theoretical description of the formation of carbon layer on the reactor walls. The fit to experimental data was extremely good. Based on the simulation results and literature findings, it is likely that the surface coverage of carbonaceous deposits is a major factor in thermal reactions.
Resumo:
Koalesenssi on ilmiö, jossa dispergoidun faasin pisarat pyrkivät muodostamaan suurempia pisaroita kunnes erotettava faasi muodostuu. Koalesenssi tapahtuu kolmessa päävaiheessa, jotka ovat lähestyminen, kiinnittyminen ja irrotus. Lähestymiseen vaikuttavat mekanismit ovat muuan muassa sieppaus, diffuusio, törmäysvaikutus, sedimentaatio, sähköiset repul-siovoimat ja van der Waalsin voimat. Kiinnittymisvaiheessa dispergoidun faasin pisarat syrjäyttävät väliaineen nestekalvon samalla kostuttaen väliaineen pinnan. Irrotusvaiheessa pisaran hydrodynaaminen voima voittaa pisaran ja väliaineen välisen adheesiovoiman. Koalesenssin tehokkuuteen vaikuttavat useat eri parametrit kuten virtausnopeus, pedin ominaisuudet, väliaineen ominaisuudet sekä emulsion ominaisuudet. Nämä kaikki asiat tulee ottaa huomioon koalesenssisuodatuksen suunnittelussa. Koalesenssisuodatus lukeutuu syväsuodatusmenetelmiin, jotka on ollut käytössä jo yli 100 vuotta. Koalesenssisuodatusmenetelmä on tehokas menetelmä pienten pisaroiden erottami-seen. Menetelmää käytetään esimerkiksi öljyisten jätevesien puhdistuksessa. Teollisen öljyn syväsuodatuksen etuihin kuuluu muun muassa sen kompakti koko, alhaisemmat käyt-tökustannukset, korkea erotusaste, kyky erotella pienetkin pisarat sekä helppo operointi, automatisointi ja huolto. Suurin haittapuoli on kuitenkin väliaineen tukkeutuminen, joten prosessi vaatii puhdistuksen tai väliaineen uusimisen. Tämän kandidaatintyön tarkoituksena oli koota kirjallisuustyö öljyn koalesenssisuodatuk-sesta. Työssä kartoitettiin koalesenssisuodatuksen lähtökohdat, teoria, tärkeimmät teolli-suuden sovellukset sekä väliaineet.
Resumo:
It is well known that the interaction of polyelectrolytes with oppositely charged surfactants leads to an associative phase separation; however, the phase behavior of DNA and oppositely charged surfactants is more strongly associative than observed in other systems. A precipitate is formed with very low amounts of surfactant and DNA. DNA compaction is a general phenomenon in the presence of multivalent ions and positively charged surfaces; because of the high charge density there are strong attractive ion correlation effects. Techniques like phase diagram determinations, fluorescence microscopy, and ellipsometry were used to study these systems. The interaction between DNA and catanionic mixtures (i.e., mixtures of cationic and anionic surfactants) was also investigated. We observed that DNA compacts and adsorbs onto the surface of positively charged vesicles, and that the addition of an anionic surfactant can release DNA back into solution from a compact globular complex between DNA and the cationic surfactant. Finally, DNA interactions with polycations, chitosans with different chain lengths, were studied by fluorescence microscopy, in vivo transfection assays and cryogenic transmission electron microscopy. The general conclusion is that a chitosan effective in promoting compaction is also efficient in transfection.
Resumo:
The Large Hadron Collider (LHC) in The European Organization for Nuclear Research (CERN) will have a Long Shutdown sometime during 2017 or 2018. During this time there will be maintenance and a possibility to install new detectors. After the shutdown the LHC will have a higher luminosity. A promising new type of detector for this high luminosity phase is a Triple-GEM detector. During the shutdown these detectors will be installed at the Compact Muon Solenoid (CMS) experiment. The Triple-GEM detectors are now being developed at CERN and alongside also a readout ASIC chip for the detector. In this thesis a simulation model was developed for the ASICs analog front end. The model will help to carry out more extensive simulations and also simulate the whole chip before the whole design is finished. The proper functioning of the model was tested with simulations, which are also presented in the thesis.
Resumo:
Feature extraction is the part of pattern recognition, where the sensor data is transformed into a more suitable form for the machine to interpret. The purpose of this step is also to reduce the amount of information passed to the next stages of the system, and to preserve the essential information in the view of discriminating the data into different classes. For instance, in the case of image analysis the actual image intensities are vulnerable to various environmental effects, such as lighting changes and the feature extraction can be used as means for detecting features, which are invariant to certain types of illumination changes. Finally, classification tries to make decisions based on the previously transformed data. The main focus of this thesis is on developing new methods for the embedded feature extraction based on local non-parametric image descriptors. Also, feature analysis is carried out for the selected image features. Low-level Local Binary Pattern (LBP) based features are in a main role in the analysis. In the embedded domain, the pattern recognition system must usually meet strict performance constraints, such as high speed, compact size and low power consumption. The characteristics of the final system can be seen as a trade-off between these metrics, which is largely affected by the decisions made during the implementation phase. The implementation alternatives of the LBP based feature extraction are explored in the embedded domain in the context of focal-plane vision processors. In particular, the thesis demonstrates the LBP extraction with MIPA4k massively parallel focal-plane processor IC. Also higher level processing is incorporated to this framework, by means of a framework for implementing a single chip face recognition system. Furthermore, a new method for determining optical flow based on LBPs, designed in particular to the embedded domain is presented. Inspired by some of the principles observed through the feature analysis of the Local Binary Patterns, an extension to the well known non-parametric rank transform is proposed, and its performance is evaluated in face recognition experiments with a standard dataset. Finally, an a priori model where the LBPs are seen as combinations of n-tuples is also presented
Resumo:
5-Bromo-2’-deoxyuridine (BrdUrd) has long been known to interfere with cell differentiation. We found that treatment ofBradysia hygida larvae with BrdUrd during DNA puff anlage formation in the polytene chromosomes of the salivary gland S1 region noticeably affects anlage morphology. However, it does not affect subsequent metamorphosis to the adult stage. The chromatin of the chromosomal sites that would normally form DNA puffs remains very compact and DNA puff expansion does not occur with administration of 4 to 8 mM BrdUrd. Injection of BrdUrd at different ages provoked a gradient of compaction of the DNA puff chromatin, leading to the formation of very small to almost normal puffs. By immunodetection, we show that the analogue is preferentially incorporated into the DNA puff anlages. When BrdUrd is injected in a mixture with thymidine, it is not incorporated into the DNA, and normal DNA puffs form. Therefore, incorporation of this analogue into the amplified DNA seems to be the cause of this extreme compaction. Autoradiographic experiments and silver grains counting showed that this treatment decreases the efficiency of RNA synthesis at DNA puff anlages.
Resumo:
Wind is one of the most compelling forms of indirect solar energy. Available now, the conversion of wind power into electricity is and will continue to be an important element of energy self-sufficiency planning. This paper is one in a series intended to report on the development of a new type of generator for wind energy; a compact, high-power, direct-drive permanent magnet synchronous generator (DD-PMSG) that uses direct liquid cooling (LC) of the stator windings to manage Joule heating losses. The main param-eters of the subject LC DD-PMSG are 8 MW, 3.3 kV, and 11 Hz. The stator winding is cooled directly by deionized water, which flows through the continuous hollow conductor of each stator tooth-coil winding. The design of the machine is to a large degree subordinate to the use of these solid-copper tooth-coils. Both steady-state and timedependent temperature distributions for LC DD-PMSG were examined with calculations based on a lumpedparameter thermal model, which makes it possible to account for uneven heat loss distribution in the stator conductors and the conductor cooling system. Transient calculations reveal the copper winding temperature distribution for an example duty cycle during variable-speed wind turbine operation. The cooling performance of the liquid cooled tooth-coil design was predicted via finite element analysis. An instrumented cooling loop featuring a pair of LC tooth-coils embedded in a lamination stack was built and laboratory tested to verify the analytical model. Predicted and measured results were in agreement, confirming the predicted satisfactory operation of the LC DD-PMSG cooling technology approach as a whole.
Resumo:
As increasing efficiency of a wind turbine gearbox, more power can be transferred from rotor blades to generator and less power is used to cause wear and heating in the gearbox. By using a simulation model, behavior of the gearbox can be studied before creating expensive prototypes. The objective of the thesis is to model a wind turbine gearbox and its lubrication system to study power losses and heat transfer inside the gearbox and to study the simulation methods of the used software. Software used to create the simulation model is Siemens LMS Imagine.Lab AMESim, which can be used to create one-dimensional mechatronic system simulation models from different fields of engineering. When combining components from different libraries it is possible to create a simulation model, which includes mechanical, thermal and hydraulic models of the gearbox. Results for mechanical, thermal, and hydraulic simulations are presented in the thesis. Due to the large scale of the wind turbine gearbox and the amount of power transmitted, power loss calculations from AMESim software are inaccurate and power losses are modelled as constant efficiency for each gear mesh. Starting values for simulation in thermal and hydraulic simulations were chosen from test measurements and from empirical study as compact and complex design of gearbox prevents accurate test measurements. In further studies to increase the accuracy of the simulation model, components used for power loss calculations needs to be modified and values for unknown variables are needed to be solved through accurate test measurements.
Resumo:
In recent years, technological advancements in microelectronics and sensor technologies have revolutionized the field of electrical engineering. New manufacturing techniques have enabled a higher level of integration that has combined sensors and electronics into compact and inexpensive systems. Previously, the challenge in measurements was to understand the operation of the electronics and sensors, but this has now changed. Nowadays, the challenge in measurement instrumentation lies in mastering the whole system, not just the electronics. To address this issue, this doctoral dissertation studies whether it would be beneficial to consider a measurement system as a whole from the physical phenomena to the digital recording device, where each piece of the measurement system affects the system performance, rather than as a system consisting of small independent parts such as a sensor or an amplifier that could be designed separately. The objective of this doctoral dissertation is to describe in depth the development of the measurement system taking into account the challenges caused by the electrical and mechanical requirements and the measurement environment. The work is done as an empirical case study in two example applications that are both intended for scientific studies. The cases are a light sensitive biological sensor used in imaging and a gas electron multiplier detector for particle physics. The study showed that in these two cases there were a number of different parts of the measurement system that interacted with each other. Without considering these interactions, the reliability of the measurement may be compromised, which may lead to wrong conclusions about the measurement. For this reason it is beneficial to conceptualize the measurement system as a whole from the physical phenomena to the digital recording device where each piece of the measurement system affects the system performance. The results work as examples of how a measurement system can be successfully constructed to support a study of sensors and electronics.
Resumo:
The aim of this work was to study the changes induced by BG in the behaviour of wheat starch, and observe the influence of these variations on the quality of a basic white bread. The effect of four BG addition levels in the wheat flour functional characteristics (WAI, WSI, and pasting properties) and bread quality (physical parameters, crumb grain structure, moisture and hardness) was investigated. The highest levels of BG (1% and 2%) decreased the peak viscosity, and increased the stability and setback of the flour. This was due to a lower gelatinization of the starch granules, caused by a competition for water between the hydrocolloid and starch. These changes influenced the bread quality. The loaves added with 1% and 2% of BG presented smaller alveoli: this resulted in more compact, hard and less airy crumbs. Nevertheless, the moisture of the samples at 1% and 2% of added gum was higher than the control bread. However, the incorporation of BG at 0.5% did not affect the pasting parameters and bread quality, but increased moisture of crumb, so this concentration would be most recommended for baking, since higher humidity could favour the shelf- life of the product.