950 resultados para TYROSINE NITRATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An increased expression of nitric oxide synthase (NOS) has been observed in human colon carcinoma cell lines as well as in human gynecological, breast, and central nervous system tumors. This observation suggests a pathobiological role of tumor-associated NO production. Hence, we investigated NOS expression in human colon cancer in respect to tumor staging, NOS-expressing cell type(s), nitrotyrosine formation, inflammation, and vascular endothelial growth factor expression. Ca2+-dependent NOS activity was found in normal colon and in tumors but was significantly decreased in adenomas (P < 0.001) and carcinomas (Dukes' stages A-D: P < 0.002). Ca2+-independent NOS activity, indicating inducible NOS (NOS2), is markedly expressed in approximately 60% of human colon adenomas (P < 0.001 versus normal tissues) and in 20-25% of colon carcinomas (P < 0.01 versus normal tissues). Only low levels were found in the surrounding normal tissue. NOS2 activity decreased with increasing tumor stage (Dukes' A-D) and was lowest in colon metastases to liver and lung. NOS2 was detected in tissue mononuclear cells (TMCs), endothelium, and tumor epithelium. There was a statistically significant correlation between NOS2 enzymatic activity and the level of NOS2 protein detected by immunohistochemistry (P < 0.01). Western blot analysis of tumor extracts with Ca2+-independent NOS activity showed up to three distinct NOS2 protein bands at Mr 125,000-Mr 138,000. The same protein bands were heavily tyrosine-phosphorylated in some tumor tissues. TMCs, but not the tumor epithelium, were immunopositive using a polyclonal anti-nitrotyrosine antibody. However, only a subset of the NOS2-expressing TMCs stained positively for 3-nitrotyrosine, which is a marker for peroxynitrite formation. Furthermore, vascular endothelial growth factor expression was detected in adenomas expressing NOS2. These data are consistent with the hypothesis that excessive NO production by NOS2 may contribute to the pathogenesis of colon cancer progression at the transition of colon adenoma to carcinoma in situ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: We use an approach based on Factor Analysis to analyze datasets generated for transcriptional profiling. The method groups samples into biologically relevant categories, and enables the identification of genes and pathways most significantly associated to each phenotypic group, while allowing for the participation of a given gene in more than one cluster. Genes assigned to each cluster are used for the detection of pathways predominantly activated in that cluster by finding statistically significant associated GO terms. We tested the approach with a published dataset of microarray experiments in yeast. Upon validation with the yeast dataset, we applied the technique to a prostate cancer dataset. Results: Two major pathways are shown to be activated in organ-confined, non-metastatic prostate cancer: those regulated by the androgen receptor and by receptor tyrosine kinases. A number of gene markers (HER3, IQGAP2 and POR1) highlighted by the software and related to the later pathway have been validated experimentally a posteriori on independent samples. Conclusion: Using a new microarray analysis tool followed by a posteriori experimental validation of the results, we have confirmed several putative markers of malignancy associated with peptide growth factor signalling in prostate cancer and revealed others, most notably ERRB3 (HER3). Our study suggest that, in primary prostate cancer, HER3, together or not with HER4, rather than in receptor complexes involving HER2, could play an important role in the biology of these tumors. These results provide new evidence for the role of receptor tyrosine kinases in the establishment and progression of prostate cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liver is unique in its capacity to regenerate in response to injury or tissue loss. Hepatocytes and other liver cells are able to proliferate and repopulate the liver. However, when this response is impaired, the contribution of hepatic progenitors becomes very relevant. Here, we present an update of recent studies on growth factors and cytokine-driven intracellular pathways that govern liver stem/progenitor cell expansion and differentiation, and the relevance of these signals in liver development, regeneration and carcinogenesis. Tyrosine kinase receptor signaling, in particular, c-Met, epidermal growth factor receptors or fibroblast growth factor receptors, contribute to proliferation, survival and differentiation of liver stem/progenitor cells. Different evidence suggests a dual role for the transforming growth factor (TGF)-β signaling pathway in liver stemness and differentiation. On the one hand, TGF-β mediates progression of differentiation from a progenitor stage, but on the other hand, it contributes to the expansion of liver stem cells. Hedgehog family ligands are necessary to promote hepatoblast proliferation but need to be shut off to permit subsequent hepatoblast differentiation. In the same line, the Wnt family and β-catenin/T-cell factor pathway is clearly involved in the maintenance of liver stemness phenotype, and its repression is necessary for liver differentiation during development. Collectively, data indicate that liver stem/progenitor cells follow their own rules and regulations. The same signals that are essential for their activation, expansion and differentiation are good candidates to contribute, under adequate conditions, to the paradigm of transformation from a pro-regenerative to a pro-tumorigenic role. From a clinical perspective, this is a fundamental issue for liver stem/progenitor cell-based therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In ∼5% of advanced NSCLC tumours, ALK tyrosine kinase is constitutively activated after translocation of ALK. ALK+ NSCLC was shown to be highly sensitive to the first approved ALK inhibitor, crizotinib. However, all pts eventually relapse on crizotinib mainly due to secondary ALK mutations/amplification or CNS metastases. Alectinib is a highly selective, potent, oral next-generation ALK inhibitor. Clinical phase II alectinib data in 46 crizotinib-naïve pts with ALK+ NSCLC reported an objective response rate (ORR) of 93.5% and a 1-year progression-free rate of 83% (95% CI: 68-92) (Inoue et al. J Thorac Oncol 2013). CNS activity was seen: of 14 pts with baseline brain metastasis, 11 had prior CNS radiation, 9 of these experienced CNS and systemic PFS of >12 months; of the 3 pts without prior CNS radiation, 2 were >15 months progression free. Trial design: Randomised, multicentre, phase III, open-label study in pts with treatment-naïve ALK+ advanced, recurrent, or metastatic NSCLC. All pts must provide pretreatment tumour tissue to confirm ALK rearrangement (by IHC). Pts (∼286 from ∼180 centres, ∼30 countries worldwide) will be randomised to alectinib (600mg oral bid, with food) or crizotinib (250mg oral bid, with/without food) until disease progression (PD), unacceptable toxicity, withdrawal of consent, or death. Stratification factors are: ECOG PS (0/1 vs 2), race (Asian vs non-Asian), baseline CNS metastases (yes vs no). Primary endpoint: PFS by investigators (RECIST v1.1). Secondary endpoints: PFS by Independent Review Committee (IRC); ORR; duration of response; OS; safety; pharmacokinetics; quality of life. Additionally, time to CNS progression will be evaluated (MRI) for the first time in a prospective randomised NSCLC trial as a secondary endpoint. Pts with isolated asymptomatic CNS progression will be allowed to continue treatment beyond documented progression until systemic PD and/or symptomatic CNS progression, according to investigator opinion. Time to CNS progression will be retrospectively assessed by the IRC using two separate criteria, RECIST and RANO. Further details: ClinicalTrials.gov (NCT02075840). Disclosure: T.S.K. Mok: Advisory boards: AZ, Roche, Eli Lilly, Merck Serono, Eisai, BMS, AVEO, Pfizer, Taiho, Boehringer Ingelheim, Novartis, GSK Biologicals, Clovis Oncology, Amgen, Janssen, BioMarin; board of directors: IASLC; corporate sponsored research: AZ; M. Perol: Advisory boards: Roche; S.I. Ou: Consulting: Pfizer, Chugai, Genentech Speaker Bureau: Pfizer, Genentech, Boehringer Ingelheim; I. Bara: Employee: F. Hoffmann-La Roche Ltd; V. Henschel: Employee and stock: F. Hoffmann-La Roche Ltd.; D.R. Camidge: Honoraria: Roche/Genentech. All other authors have declared no conflicts of interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the Src family of kinases (SFKs) are non-receptor tyrosine kinases involved in numerous signal transduction pathways. The catalytic, SH3 and SH2 domains are attached to the membrane-anchoring SH4 domain through the intrinsically disordered"Unique" domains, which exhibit strong sequence divergence among SFK members. In the last decade, structural and biochemical studies have begun to uncover the crucial role of the Unique domain in the regulation of SFK activity. This mini-review discusses what is known about the phosphorylation events taking place on the SFK Unique domains, and their biological relevance. The modulation by phosphorylation of biologically relevant inter- and intra- molecular interactions of Src, as well as the existence of complex phosphorylation/dephosphorylation patterns observed for the Unique domain of Src, reinforces the important functional role of the Unique domain in the regulation mechanisms of the Src kinases and, in a wider context, of intrinsically disordered regions in cellular processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution mass spectrometry (HRMS) has been associated with qualitative and research analysis and QQQ-MS with quantitative and routine analysis. This view is now challenged and for this reason, we have evaluated the quantitative LC-MS performance of a new high-resolution mass spectrometer (HRMS), a Q-orbitrap-MS, and compared the results obtained with a recent triple-quadrupole MS (QQQ-MS). High-resolution full-scan (HR-FS) and MS/MS acquisitions have been tested with real plasma extracts or pure standards. Limits of detection, dynamic range, mass accuracy and false positive or false negative detections have been determined or investigated with protease inhibitors, tyrosine kinase inhibitors, steroids and metanephrines. Our quantitative results show that today's available HRMS are reliable and sensitive quantitative instruments and comparable to QQQ-MS quantitative performance. Taking into account their versatility, user-friendliness and robustness, we believe that HRMS should be seen more and more as key instruments in quantitative LC-MS analyses. In this scenario, most targeted LC-HRMS analyses should be performed by HR-FS recording virtually "all" ions. In addition to absolute quantifications, HR-FS will allow the relative quantifications of hundreds of metabolites in plasma revealing individual's metabolome and exposome. This phenotyping of known metabolites should promote HRMS in clinical environment. A few other LC-HRMS analyses should be performed in single-ion-monitoring or MS/MS mode when increased sensitivity and/or detection selectivity will be necessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: For the past decade (18)F-fluoro-ethyl-l-tyrosine (FET) and (18)F-fluoro-deoxy-glucose (FDG) positron emission tomography (PET) have been used for the assessment of patients with brain tumor. However, direct comparison studies reported only limited numbers of patients. Our purpose was to compare the diagnostic performance of FET and FDG-PET. METHODS: We examined studies published between January 1995 and January 2015 in the PubMed database. To be included the study should: (i) use FET and FDG-PET for the assessment of patients with isolated brain lesion and (ii) use histology as the gold standard. Analysis was performed on a per patient basis. Study quality was assessed with STARD and QUADAS criteria. RESULTS: Five studies (119 patients) were included. For the diagnosis of brain tumor, FET-PET demonstrated a pooled sensitivity of 0.94 (95% CI: 0.79-0.98) and pooled specificity of 0.88 (95% CI: 0.37-0.99), with an area under the curve of 0.96 (95% CI: 0.94-0.97), a positive likelihood ratio (LR+) of 8.1 (95% CI: 0.8-80.6), and a negative likelihood ratio (LR-) of 0.07 (95% CI: 0.02-0.30), while FDG-PET demonstrated a sensitivity of 0.38 (95% CI: 0.27-0.50) and specificity of 0.86 (95% CI: 0.31-0.99), with an area under the curve of 0.40 (95% CI: 0.36-0.44), an LR+ of 2.7 (95% CI: 0.3-27.8), and an LR- of 0.72 (95% CI: 0.47-1.11). Target-to-background ratios of either FDG or FET, however, allow distinction between low- and high-grade gliomas (P > .11). CONCLUSIONS: For brain tumor diagnosis, FET-PET performed much better than FDG and should be preferred when assessing a new isolated brain tumor. For glioma grading, however, both tracers showed similar performances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A procedure for the nitration of phenol in a semi-micro scale, followed by separation of the formed orto- and para-nitrophenol isomers by column chromatography, is described. All the experiment, including determination of the melting point of the isolated products, require a period of 4 hours, and it is suitable for organic chemistry laboratory undergraduate courses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aromatic nitration is one of the most relevant class of reactions in organic chemistry. It has been intensively studied by both experimental, including works in the condensed as well as in the gas phase, and theoretical procedures. However, the published results do not seem to converge to an unique mechanism. Electrophilic substitution and electron transfer, in an exclusive way, are both proposed as the main mechanism for the reaction. We review these proposals and discuss the most recent findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compounds 5-nitro-8-quinolinol and 5,7-dinitro-8-quinolinol were obtained by nitration of the chelant 8-quinolinol. The compounds were characterized through EA, MNR, XRD, IR, TG, DTA and DSC. It was verified through thermal analysis that the compounds show consecutive processes of sublimation, fusion and vaporization. During the vaporization process, partial thermal decomposition was observed, with formation of carbonaceous residues. Considering a slower heating rate, the sublimation is the prevalent process to the nitro-derivatives while the vaporization is the main process to 8-quinolinol. The thermal stability follows the decreasing order from 5,7-dinitro-8-quinolinol to 5-nitro-8-quinolinol to 8-quinolinol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by 'RTK swapping' by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O(2) and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O(2)/CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by 'RTK swapping' by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infertility is a common late effect of childhood cancer treatment. Testicular toxicity can clinically be first detected after the onset of pubertal maturation of the patients when the testis does not grow, spermatogenesis does not initiate and serum levels of gonadotrophins rise. Improved prognosis for childhood cancer has resulted in a growing number of childhood cancer survivors with late effects. In our study, we developed novel tools for detecting cancer therapy-related testicular toxicity during development. By using these methods the effects of the tyrosine kinase inhibitor imatinib mesylate, chemotherapy agent doxorubicin and irradiation on testicular development were investigated in rat and monkey. Patients with chronic myeloid leukemia and some patients with acute lymphoblastic leukemia have fusion gene BCR-ABL which codes for abnormal tyrosine kinase protein. Imatinib mesylate (Glivec®) inhibits activity of this protein. In addition, imatinib inhibits the action of the c-kit and PDGF –receptors, which are both important for the survival and proliferation of the spermatogonial stem cell pool. Imatinib exposure during prepubertal development disturbed the development and the growth of the testis. Spermatogonial stem cells were also sensitive to the toxic effects of doxorubicin and irradiation during the initiation phase of spermatogenesis. In addition, the effect of the treatment of acute lymphoblastic leukemia on germ cell numbers and recovery of reproductive functions after sexual maturation was investigated. Therapy for childhood acute lymphoblastic leukemia seldom results in infertility. The present study gives new information on the mechanisms by which cancer treatments exert their gonadal toxicity in immature testis.