965 resultados para TONIC CONTRACTION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the present study was to examine the relationship between the electromyographic (EMG) activity and heart rate (HR) responses induced by isometric exercise performed by knee extension (KE) and flexion (KF) in men. Fifteen healthy male subjects, 21 ± 1.3 years (mean ± SD), were submitted to KE and KF isometric exercise tests at 100% of maximal voluntary contraction (MVC). The exercises were performed with one leg (right or left) and with two legs simultaneously, for 10 s in the sitting position with the hip and knee flexed at 90o. EMG activity (root mean square values) and HR (beats/min) were recorded simultaneously both at rest and throughout the sustained contraction. The HR responses to isometric exercise in KE and KF were similar when performed with one and two legs. However, the HR increase was always significantly higher in KE than KF (P<0.05), whereas the EMG activity was higher in KE than in KF (P<0.05), regardless of the muscle mass (one or two legs) involved in the effort. The correlation coefficients between HR response and the EMG activity during KE (r = 0.33, P>0.05) and KF (r = 0.15, P>0.05) contractions were not significant. These results suggest that the predominant mechanism responsible for the larger increase in HR response to KE as compared to KF in our study could be dependent on qualitative and quantitative differences in the fiber type composition found in each muscle group. This mechanism seems to demand a higher activation of motor units with a corresponding increase in central command to the cardiovascular centers that modulate HR control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP) = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since a7 nicotinic acetylcholine receptors (nAChRs) have low affinity for nicotine in binding assays, we suggest that a mixed population composed of a3ß4 - plus a7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h) is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an a7 nAChR subtype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High magnesium concentration inhibits the effect of arginine vasopressin (AVP) on smooth muscle contraction and platelet aggregation and also influences hepatocyte AVP receptor binding. The aim of this study was to determine the role of magnesium concentration [Mg2+] in AVP-stimulated water transport in the kidney collecting duct. The effect of low and high peritubular [Mg2+] on the AVP-stimulated osmotic water permeability coefficient (Pf) was evaluated in the isolated perfused rabbit cortical collecting duct (CCD). Control tubules bathed and perfused with standard Ringer bicarbonate solution containing 1 mM Mg2+ presented a Pf of 223.9 ± 27.2 µm/s. When Mg2+ was not added to the bathing solution, an increase in the AVP-stimulated Pf to 363.1 ± 57.2 µm/s (P<0.05) was observed. An elevation of Mg2+ to 5 mM resulted in a decrease in Pf to 202.9 ± 12.6 µm/s (P<0.05). This decrease in the AVP-stimulated Pf at 5 mM Mg2+ persisted when the CCDs were returned to 1 mM Mg2+, Pf = 130.2 ± 20.3 µm/s, and was not normalized by the addition of 8-[4-chlorophenylthio]-adenosine 3',5'-cyclic monophosphate, a cAMP analogue, to the preparation. These data indicate that magnesium may play a modulatory role in the action of AVP on CCD osmotic water permeability, as observed in other tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiac surgery involving ischemic arrest and extracorporeal circulation is often associated with alterations in vascular reactivity and permeability due to changes in the expression and activity of isoforms of nitric oxide synthase and cyclooxygenase. These inflammatory changes may manifest as systemic hypotension, coronary spasm or contraction, myocardial failure, and dysfunction of the lungs, gut, brain and other organs. In addition, endothelial dysfunction may increase the occurrence of late cardiac events such as graft thrombosis and myocardial infarction. These vascular changes may lead to increased mortality and morbidity and markedly lengthen the time of hospitalization and cost of cardiac surgery. Developing a better understanding of the vascular changes operating through nitric oxide synthase and cyclooxygenase may improve the care and help decrease the cost of cardiovascular operations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role gap junction channels play in the normal and abnormal functioning of the vascular wall is the subject of much research. The biophysical properties of gap junctions are an essential component in understanding how gap junctions function to allow coordinated relaxation and contraction of vascular smooth muscle. This study reviews the properties thus far elucidated and relates those properties to tissue function. We ask how biophysical and structural properties such as gating, permselectivity, subconductive states and channel type (heteromeric vs homotypic vs heterotypic) might affect vascular smooth muscle tone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twitch potentiation and fatigue in skeletal muscle are two conditions in which force production is affected by the stimulation history. Twitch potentiation is the increase in the twitch active force observed after a tetanic contraction or during and following low-frequency stimulation. There is evidence that the mechanism responsible for potentiation is phosphorylation of the regulatory light chains of myosin, a Ca2+-dependent process. Fatigue is the force decrease observed after a period of repeated muscle stimulation. Fatigue has also been associated with a Ca2+-related mechanism: decreased peak Ca2+ concentration in the myoplasm is observed during fatigue. This decrease is probably due to an inhibition of Ca2+ release from the sarcoplasmic reticulum. Although potentiation and fatigue have opposing effects on force production in skeletal muscle, these two presumed mechanisms can coexist. When peak myoplasmic Ca2+ concentration is depressed, but myosin light chains are relatively phosphorylated, the force response can be attenuated, not different, or enhanced, relative to previous values. In circumstances where there is interaction between potentiation and fatigue, care must be taken in interpreting the contractile responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurons in the rostral and caudal parts of the ventrolateral medulla (VLM) play a pivotal role in the regulation of sympathetic vasomotor activity and blood pressure. Studies in several species, including humans, have shown that these regions contain a high density of AT1 receptors specifically associated with neurons that regulate the sympathetic vasomotor outflow, or the secretion of vasopressin from the hypothalamus. It is well established that specific activation of AT1 receptors by application of exogenous angiotensin II in the rostral and caudal VLM excites sympathoexcitatory and sympathoinhibitory neurons, respectively, but the physiological role of these receptors in the normal synaptic regulation of VLM neurons is not known. In this paper we review studies which have defined the effects of specific activation or blockade of these receptors on cardiovascular function, and discuss what these findings tell us with regard to the physiological role of AT1 receptors in the VLM in the tonic and phasic regulation of sympathetic vasomotor activity and blood pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO)-synthase is present in diaphragm, phrenic nerve and vascular smooth muscle. It has been shown that the NO precursor L-arginine (L-Arg) at the presynaptic level increases the amplitude of muscular contraction (AMC) and induces tetanic fade when the muscle is indirectly stimulated at low and high frequencies, respectively. However, the precursor in muscle reduces AMC and maximal tetanic fade when the preparations are stimulated directly. In the present study the importance of NO synthesized in different tissues for the L-Arg-induced neuromuscular effects was investigated. Hemoglobin (50 nM) did not produce any neuromuscular effect, but antagonized the increase in AMC and tetanic fade induced by L-Arg (9.4 mM) in rat phrenic nerve-diaphragm preparations. D-Arg (9.4 mM) did not produce any effect when preparations were stimulated indirectly at low or high frequency. Hemoglobin did not inhibit the decrease of AMC or the reduction in maximal tetanic tension induced by L-Arg in preparations previously paralyzed with d-tubocurarine and directly stimulated. Since only the presynaptic effects induced by L-Arg were antagonized by hemoglobin, the present results suggest that NO synthesized in muscle acts on nerve and skeletal muscle. Nevertheless, NO produced in nerve and vascular smooth muscle does not seem to act on skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In rats, the nitric oxide (NO)-synthase pathway is present in skeletal muscle, vascular smooth muscle, and motor nerve terminals. Effects of NO were previously studied in rat neuromuscular preparations receiving low (0.2 Hz) or high (200 Hz) frequencies of stimulation. The latter frequency has always induced tetanic fade. However, in these previous studies we did not determine whether NO facilitates or impairs the neuromuscular transmission in preparations indirectly stimulated at frequencies which facilitate neuromuscular transmission. Thus, the present study was carried out to examine the effects of NO in rat neuromuscular preparations indirectly stimulated at 5 and 50 Hz. The amplitude of muscular contraction observed at the end (B) of a 10-s stimulation was taken as the ratio (R) of that obtained at the start (A) (R = B/A). S-nitroso-N-acetylpenicillamine (200 µM), superoxide dismutase (78 U/ml) and L-arginine (4.7 mM), but not D-arginine (4.7-9.4 mM), produced an increase in R (facilitation of neurotransmission) at 5 Hz. However, reduction in the R value (fade of transmission) was observed at 50 Hz. N G-nitro-L-arginine (8.0 mM) antagonized both the facilitatory and inhibitory effects of L-arginine (4.7 mM). The results suggest that NO may modulate the release of acetylcholine by motor nerve terminals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the behavioral correlates of the activity of serotonergic and non-serotonergic neurons in the nucleus raphe pallidus (NRP) and nucleus raphe obscurus (NRO) of unanesthetized and unrestrained cats. The animals were implanted with electrodes for recording single unit activity, parietal oscillographic activity, and splenius, digastric and masseter electromyographic activities. They were tested along the waking-sleep cycle, during sensory stimulation and during drinking behavior. The discharge of the serotonergic neurons decreased progressively from quiet waking to slow wave sleep and to fast wave sleep. Ten different patterns of relative discharge across the three states were observed for the non-serotonergic neurons. Several non-serotonergic neurons showed cyclic discharge fluctuations related to respiration during one, two or all three states. While serotonergic neurons were usually unresponsive to the sensory stimuli used, many non-serotonergic neurons responded to these stimuli. Several non-serotonergic neurons showed a phasic relationship with splenius muscle activity during auditory stimulation. One serotonergic neuron showed a tonic relationship with digastric muscle activity during drinking behavior. A few non-serotonergic neurons exhibited a tonic relationship with digastric and/or masseter muscle activity during this behavior. Many non-serotonergic neurons exhibited a phasic relationship with these muscle activities, also during this behavior. These results suggest that the serotonergic neurons in the NRP and NRO constitute a relatively homogeneous population from a functional point of view, while the non-serotonergic neurons form groups with considerable functional specificity. The data support the idea that the NRP and NRO are implicated in the control of somatic motor output.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana, negatively modulates vagal response, indicating a probable ability to inhibit cholinergic responses. In the present study, the pharmacological profile of trimethylsulfonium was characterized on muscarinic and nicotinic acetylcholine receptors. In rat jejunum the contractile response induced by trimethylsulfonium (pD2 = 2.46 ± 0.12 and maximal response = 2.14 ± 0.32 g) was not antagonized competitively by atropine. The maximal response (Emax) to trimethylsulfonium was diminished in the presence of increasing doses of atropine (P<0.05), suggesting that trimethylsulfonium-induced contraction was not related to muscarinic stimulation, but might be caused by acetylcholine release due to presynaptic stimulation. Trimethylsulfonium displaced [³H]-quinuclidinyl benzilate from rat cortex membranes with a low affinity (Ki = 0.5 mM). Furthermore, it caused contraction of frog rectus abdominis muscles (pD2 = 2.70 ± 0.06 and Emax = 4.16 ± 0.9 g), which was competitively antagonized by d-tubocurarine (1, 3 or 10 µM) with a pA2 of 5.79, suggesting a positive interaction with nicotinic receptors. In fact, trimethylsulfonium displaced [³H]-nicotine from rat diaphragm muscle membranes with a Ki of 27.1 µM. These results suggest that trimethylsulfonium acts as an agonist on nicotinic receptors, and thus contracts frog skeletal rectus abdominis muscle and rat jejunum smooth muscle via stimulation of postjunctional and neuronal prejunctional nicotinic cholinoreceptors, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chagas' disease causes degeneration and reduction of the number of intrinsic neurons of the esophageal myenteric plexus, with consequent absent or partial lower esophageal sphincter relaxation and loss of peristalsis in the esophageal body. The impairment of esophageal motility is seen mainly in the distal smooth muscle region. There is no study about esophageal striated muscle contractions in the disease. In 81 patients with heartburn (44 with esophagitis) taken as controls, 51 patients with Chagas' disease (21 with esophageal dilatation) and 18 patients with idiopathic achalasia (11 with esophageal dilatation) we studied the amplitude, duration and area under the curve of esophageal proximal contractions. Using the manometric method and a continuous perfusion system we measured the esophageal striated muscle contractions 2 to 3 cm below the upper esophageal sphincter after swallows of a 5-ml bolus of water. There was no significant difference in striated muscle contractions between patients with heartburn and esophagitis and patients with heartburn without esophagitis. There was also no significant difference between patients with heartburn younger or older than 50 years or between men and women or in esophageal striated muscle contractions between patients with heartburn and Chagas' disease. The esophageal proximal amplitude of contractions was lower in patients with idiopathic achalasia than in patients with heartburn. In patients with Chagas' disease there was no significant difference between patients with esophageal dilatation and patients with normal esophageal diameter. Esophageal striated muscle contractions in patients with Chagas' disease have the same amplitude and duration as seen in patients with heartburn. Patients with idiopathic achalasia have a lower amplitude of contraction than patients with heartburn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiotensin II (Ang II)* is a multifunctional hormone that influences the function of cardiovascular cells through a complex series of intracellular signaling events initiated by the interaction of Ang II with AT1 and AT2 receptors. AT1 receptor activation leads to cell growth, vascular contraction, inflammatory responses and salt and water retention, whereas AT2 receptors induce apoptosis, vasodilation and natriuresis. These effects are mediated via complex, interacting signaling pathways involving stimulation of PLC and Ca2+ mobilization; activation of PLD, PLA2, PKC, MAP kinases and NAD(P)H oxidase, and stimulation of gene transcription. In addition, Ang II activates many intracellular tyrosine kinases that play a role in growth signaling and inflammation, such as Src, Pyk2, p130Cas, FAK and JAK/STAT. These events may be direct or indirect via transactivation of tyrosine kinase receptors, including PDGFR, EGFR and IGFR. Ang II induces a multitude of actions in various tissues, and the signaling events following occupancy and activation of Ang receptors are tightly controlled and extremely complex. Alterations of these highly regulated signaling pathways may be pivotal in structural and functional abnormalities that underlie pathological processes in cardiovascular diseases such as cardiac hypertrophy, hypertension and atherosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiotensin II and atrial natriuretic peptide (ANP) play important and opposite roles in the control of water and salt intake, with angiotensin II promoting the intake of both and ANP inhibiting the intake of both. Following blood volume expansion, baroreceptor input to the brainstem induces the release of ANP within the hypothalamus that releases oxytocin (OT) that acts on its receptors in the heart to cause the release of ANP. ANP activates guanylyl cyclase that converts guanosine triphosphate into cyclic guanosine monophosphate (cGMP). cGMP activates protein kinase G that reduces heart rate and force of contraction, decreasing cardiac output. ANP acts similarly to induce vasodilation. The intrinsic OT system in the heart and vascular system augments the effects of circulating OT to cause a rapid reduction in effective circulating blood volume. Furthermore, natriuresis is rapidly induced by the action of ANP on its tubular guanylyl cyclase receptors, resulting in the production of cGMP that closes Na+ channels. The OT released by volume expansion also acts on its tubular receptors to activate nitric oxide synthase. The nitric oxide released activates guanylyl cyclase leading to the production of cGMP that also closes Na+ channels, thereby augmenting the natriuretic effect of ANP. The natriuresis induced by cGMP finally causes blood volume to return to normal. At the same time, the ANP released acts centrally to decrease water and salt intake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipids used in nutritional support of surgical or critically ill patients have been based on soybean oil, which is rich in the n-6 fatty acid linoleic acid (18:2n-6). Linoleic acid is the precursor of arachidonic acid (20:4n-6). In turn, arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. There is a view that an excess of n-6 fatty acids should be avoided since this could contribute to a state where physiological processes become dysregulated. One alternative is the use of fish oil. The rationale of this latter approach is that fish oil contains long chain n-3 fatty acids, such as eicosapentaenoic acid. When fish oil is provided, eicosapentaenoic acid is incorporated into cell membrane phospholipids, partly at the expense of arachidonic acid. Thus, there is less arachidonic acid available for eicosanoid synthesis. Hence, fish oil decreases production of prostaglandins like PGE2 and of leukotrienes like LTB4. Thus, n-3 fatty acids can potentially reduce platelet aggregation, blood clotting, smooth muscle contraction, and leukocyte chemotaxis, and can modulate inflammatory cytokine production and immune function. These effects have been demonstrated in cell culture, animal feeding and healthy volunteer studies. Fish oil decreases the host metabolic response and improves survival to endotoxin in laboratory animals. Recently clinical studies performed in various patient groups have indicated benefit from this approach.