925 resultados para TNF-aplha
Resumo:
Antiinflammatory compounds in the diet can alleviate excessive inflammation, a factor in the pathogenesis of common diseases such as rheumatoid arthritis, atherosclerosis and diabetes. This study examined three European herbs, chamomile (Matricaria chamomilla), meadowsweet (Filipendula ulmaria L.) and willow bark (Salix alba L.), which have been traditionally used to treat inflammation and their potential for use as antiinflammatory agents. Aqueous herbal extracts and isolated polyphenolic compounds (apigenin, quercetin and salicylic acid, 0–100 μM) were incubated with THP1 macrophages, and interleukin (IL)-1β, IL-6 and tumour necrosis factor-alpha (TNF-) were measured. At concentrations of 10 μM, both apigenin and quercetin reduced IL-6 significantly ( p < 0.05). Apigenin at 10 μM and quercetin at 25 μM reduced TNF- significantly ( p < 0.05). Amongst the herbal extracts, willow bark had the greatest antiinflammatory activity at reducing IL-6 and TNF- production. This was followed by meadowsweet and then chamomile. The lowest effective antiinflammatory concentrations were noncytotoxic (MTT mitochondrial activity assay). The Comet assay, which was used to study the protective effect of the isolated phenols against oxidative damage, showed positive results for all three polyphenols. These are the first findings that demonstrate the antiinflammatory capacity of these herbal extracts.
Resumo:
Dendritic cells (DCs) are critical in priming adaptive T-cell responses, but the effects of ageing on interactions between DCs and T cells are unclear. This study investigated the influence of ageing on the maturation of and cytokine production by human blood-enriched DCs, and the impact on T cell responses in an allogeneic mixed leucocyte reaction (MLR). DCs from old subjects (65-75y) produced significantly less TNF-α and IFN-γ than young subjects (20-30y) in response to lipopolysaccharide (LPS), but expression of maturation markers and co-stimulatory molecules was preserved. In the MLR, DCs from older subjects induced significantly restricted proliferation of young T cells, activation of CD8+ T cells and expression of IL-12 and IFN-γ in T cells compared with young DCs. T cells from older subjects responded more weakly to DC stimulation compared with young T cells, regardless of whether the DCs were derived from young or older subjects. In conclusion, the capacity of DCs to induce T cell activation is significantly impaired by ageing.
Resumo:
BACKGROUND: Differences in the interindividual response to dietary intervention could be modified by genetic variation in nutrient-sensitive genes. OBJECTIVE: This study examined single nucleotide polymorphisms (SNPs) in presumed nutrient-sensitive candidate genes for obesity and obesity-related diseases for main and dietary interaction effects on weight, waist circumference, and fat mass regain over 6 mo. DESIGN: In total, 742 participants who had lost ≥ 8% of their initial body weight were randomly assigned to follow 1 of 5 different ad libitum diets with different glycemic indexes and contents of dietary protein. The SNP main and SNP-diet interaction effects were analyzed by using linear regression models, corrected for multiple testing by using Bonferroni correction and evaluated by using quantile-quantile (Q-Q) plots. RESULTS: After correction for multiple testing, none of the SNPs were significantly associated with weight, waist circumference, or fat mass regain. Q-Q plots showed that ALOX5AP rs4769873 showed a higher observed than predicted P value for the association with less waist circumference regain over 6 mo (-3.1 cm/allele; 95% CI: -4.6, -1.6; P/Bonferroni-corrected P = 0.000039/0.076), independently of diet. Additional associations were identified by using Q-Q plots for SNPs in ALOX5AP, TNF, and KCNJ11 for main effects; in LPL and TUB for glycemic index interaction effects on waist circumference regain; in GHRL, CCK, MLXIPL, and LEPR on weight; in PPARC1A, PCK2, ALOX5AP, PYY, and ADRB3 on waist circumference; and in PPARD, FABP1, PLAUR, and LPIN1 on fat mass regain for dietary protein interaction. CONCLUSION: The observed effects of SNP-diet interactions on weight, waist, and fat mass regain suggest that genetic variation in nutrient-sensitive genes can modify the response to diet. This trial was registered at clinicaltrials.gov as NCT00390637.
Resumo:
Dendritic cells (DCs) are critical for the generation of T-cell responses. DC function may be modulated by probiotics, which confer health benefits in immunocompromised individuals, such as the elderly. This study investigated the effects of four probiotics, Bifidobacterium longum bv. infantis CCUG 52486, B. longum SP 07/3, L. rhamnosus GG (L.GG) and L. casei Shirota (LcS) on DC function in an allogeneic mixed leucocyte reaction (MLR) model, using DCs and T-cells from young and older donors in different combinations. All four probiotics enhanced expression of CD40, CD80 and CCR7 on both young and older DCs, but enhanced cytokine production (TGF-β, TNF-α) by old DCs only. LcS induced IL-12 and IFNγ production by DC to a greater degree than other strains, while Bifidobacterium longum bv. infantis CCUG 52486 favoured IL-10 production. Stimulation of young T cells in an allogeneic MLR with DC was enhanced by probiotic pretreatment of old DCs, which demonstrated greater activation (CD25) than untreated controls. However, pretreatment of young or old DCs with LPS or probiotics failed to enhance the proliferation of T-cells derived from older donors. In conclusion, this study demonstrates that ageing increases the responsiveness of DCs to probiotics, but this is not sufficient to overcome the impact of immunosenescence in the MLR.
Resumo:
Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and β1 and interleukin 1β. Conclusions In vitro, the transcriptome of granulosa cells responded minimally to FSH compared with the response to TNFα. The response to TNFα indicated an active process akin to tissue remodelling as would occur upon atresia. Additionally there was reduction in endocrine function and induction of an inflammatory response to TNFα that displays features similar to immune cells.
Resumo:
Apolipoprotein E (APOE) genotype is believed to play an important role in cardiovascular risk. APOE4 carriers have been associated with higher blood lipid levels and a more pro-inflammatory state compared with APOE3/E3 individuals. Although dietary fat composition has been considered to modulate the inflammatory state in humans, very little is known about how APOE genotype can impact on this response. In a follow-up to the main SATgene study, we aimed to explore the effects of APOE genotype, as well as, dietary fat manipulation on ex vivo cytokine production. Blood samples were collected from a subset of SATgene participants (n = 52/88), prospectively recruited according to APOE genotype (n = 26 E3/E3 and n = 26 E3/E4) after low-fat (LF), high saturated fat (HSF) and HSF with 3.45 g docosahexaenoic acid (DHA) dietary periods (each diet eight weeks in duration assigned in the same order) for the measurement of ex vivo cytokine production using whole blood culture (WBC). Concentrations of IL-1beta, IL-6, IL-8, IL-10 and TNF-alpha were measured in WBC supernatant samples after stimulation for 24 h with either 0.05 or 1 lg/ml of bacterial lipopolysaccharide (LPS). Cytokine levels were not influenced by genotype, whereas, dietary fat manipulation had a significant impact on TNF-a and IL-10 production; TNF-a concentration was higher after consumption of the HSF diet compared with baseline and the LF diet (P < 0.05), whereas, IL-10 concentration was higher after the LF diet compared with baseline (P < 0.05). In conclusion, our study has revealed the amount and type of dietary fat can significantly modulate the production of TNF-a and IL-10 by ex vivo LPS-stimulated WBC samples obtained from normolipidaemic subjects.
Resumo:
Objective: Many diseases, including atherosclerosis, involve chronic inflammation. The master transcription factor for inflammation is NF-κB. Inflammatory sites have a low extracellular pH. Our objective was to demonstrate the effect of pH on NF-κB activation and cytokine secretion. Methods: Mouse J774 macrophages or human THP-1 or monocyte-derived macrophages were incubated at pH 7.0–7.4 and inflammatory cytokine secretion and NF-κB activity were measured. Results: A pH of 7.0 greatly decreased pro-inflammatory cytokine secretion (TNF or IL-6) by J774 macrophages, but not THP-1 or human monocyte-derived macrophages. Upon stimulation of mouse macrophages, the levels of IκBα, which inhibits NF-κB, fell but low pH prevented its later increase, which normally restores the baseline activity of NF-κB, even though the levels of mRNA for IκBα were increased. pH 7.0 greatly increased and prolonged NF-κB binding to its consensus promoter sequence, especially the anti-inflammatory p50:p50 homodimers. Human p50 was overexpressed using adenovirus in THP-1 macrophages and monocyte-derived macrophages to see if it would confer pH sensitivity to NF-κB activity in human cells. Overexpression of p50 increased p50:p50 DNA-binding and in THP-1 macrophages inhibited considerably TNF and IL-6 secretion, but there was still no effect of pH on p50:p50 DNA binding or cytokine secretion. Conclusion: A modest decrease in pH can sometimes have marked effects on NF-κB activation and cytokine secretion and might be one reason to explain why mice normally develop less atherosclerosis than do humans.
Resumo:
The potential of a prebiotic oligosaccharide lactulose, a probiotic strain of Lactobacillus plantarum, or their synbiotic combination to control postweaning colibacillosis in pigs was evaluated using an enterotoxigenic Escherichia coli (ETEC) K88 oral challenge. Seventy-two weanlings were fed four diets: a control diet (CTR), that diet supplemented with L. plantarum (2 × 10(10) CFU · day(-1)) (LPN), that diet supplemented with 10 g · kg(-1) lactulose (LAC), or a combination of the two treatments (SYN). After 7 days, the pigs were orally challenged. Six pigs per treatment were euthanized on days 6 and 10 postchallenge (PC). Inclusion of lactulose improved the average daily gain (ADG) (P < 0.05) and increased lactobacilli (P < 0.05) and the percentage of butyric acid (P < 0.02) in the colon. An increase in the ileum villous height (P < 0.05) and a reduction of the pig major acute-phase protein (Pig-MAP) in serum (P < 0.01) were observed also. The inclusion of the probiotic increased numbers of L. plantarum bacteria in the ileum and colon (P < 0.05) and in the total lactobacilli in the colon and showed a trend to reduce diarrhea (P = 0.09). The concentrations of ammonia in ileal and colonic digesta were decreased (P < 0.05), and the villous height (P < 0.01) and number of ileal goblet cells (P < 0.05) increased, at day 10 PC. A decrease in plasmatic tumor necrosis factor alpha (TNF-α) (P < 0.01) was also seen. The positive effects of the two additives were combined in the SYN treatment, resulting in a complementary synbiotic with potential to be used to control postweaning colibacillosis.
Resumo:
Iron is an essential cofactor for both mycobacterial growth during infection and for a successful protective immune response by the host. The immune response partly depends on the regulation of iron by the host, including the tight control of expression of the iron-storage protein, ferritin. BCG vaccination can protect against disease following Mycobacterium tuberculosis infection, but the mechanisms of protection remain unclear. To further explore these mechanisms, splenocytes from BCG-vaccinated guinea pigs were stimulated ex vivo with purified protein derivative from M. tuberculosis and a significant down-regulation of ferritin light- and heavy-chain was measured by reverse-transcription quantitative-PCR (P ≤0.05 and ≤0.01, respectively). The mechanisms of this down-regulation were shown to involve TNFα and nitric oxide. A more in depth analysis of the mRNA expression profiles, including genes involved in iron metabolism, was performed using a guinea pig specific immunological microarray following ex vivo infection with M. tuberculosis of splenocytes from BCG-vaccinated and naïve guinea pigs. M. tuberculosis infection induced a pro-inflammatory response in splenocytes from both groups, resulting in down-regulation of ferritin (P ≤0.05). In addition, lactoferrin (P ≤0.002), transferrin receptor (P ≤0.05) and solute carrier family 11A1 (P ≤0.05), were only significantly down-regulated after infection of the splenocytes from BCG-vaccinated animals. The results show that expression of iron-metabolism genes is tightly regulated as part of the host response to M. tuberculosis infection and that BCG-vaccination enhances the ability of the host to mount an iron-restriction response which may in turn help to combat invasion by mycobacteria.
Resumo:
As a model for brain inflammation we previously studied transcriptional profiles of tumor necrosis factor-alpha (TNF)treated U373 astroglioma cells. In previous work we were able to demonstrate that the chemokine monocyte chemoattractant protein-1 (MCP-1, SCYA2, CCL2, MCAF) expression in U373 cells was inducible by TNF-alpha treatment. Demonstrably MCP-1 mRNA and protein expression in U373 cells was sustainable over time and at the highest level of all genes analyzed (Schwamborn et al., BMC Genomics 4, 46, 2003). In the hematopoietic system MCP-1 is a CC chemokine that attracts monocytes, memory T lymphocytes, and natural killer cells. In search of further functions in brain inflammation we tested the hypothesis that MCP-1 acts as a chemokine on neural stem cells. Here we report that MCP-1 activates the migration capacity of rat-derived neural stem cells. The migration of stem cells in a Boyden chamber analysis was elevated after stimulation with MCP-1. Time-lapse video microscopy visualized the migration of single stem cells from neurospheres in MCP-1-treated cultures, whereas untreated cultures depicted no migration at all, but showed signs of sprouting. Expression of the MCP-1 receptor CCR2 in neurosphere cultures was verified by RT-PCR and immunofluorescence microscopy. Supernatants from TNF-treated U373 cells also induced migration of neural stem cells.
Resumo:
The approach of reaggregation involves the regeneration and self-renewal of histotypical 3D spheres from isolated tissue kept in suspension culture. Reaggregated spheres can be used as tumour, genetic, biohybrid and neurosphere models. In addition the functional superiority of 3D aggregates over conventional 2D cultures developed the use of neurospheres for brain engineering of CNS diseases. Thus 3D aggregate cultures created enormous interest in mechanisms that regulate the formation of multicellular aggregates in vitro. Here we analyzed mechanisms guiding the development of 3D neurosphere cultures. Adult neural stem cells can be cultured as self-adherent clusters, called neurospheres. Neurospheres are characterised as heterogeneous clusters containing unequal stem cell sub-types. Tumour necrosis factor-alpha (TNF-alpha is one of the crucial inflammatory cytokines with multiple actions on several cell types. TNF-alpha strongly activates the canonical Nuclear Factor Kappa-B (NF- kappaB) pathway. In order to investigate further functions of TNF in neural stem cells (NSCs) we tested the hypothesis that TNF is able to modulate the motility and/or migratory behaviour of SVZ derived adult neural stem cells. We observed a significantly faster sphere formation in TNF treated cultures than in untreated controls. The very fast aggregation of isolated NSCs (<2h) is a commonly observed phenomenon, though the mechanisms of 3D neurosphere formation remain largely unclear. Here we demonstrate for the first time, increased aggregation and enhanced motility of isolated NSCs in response to the TNF-stimulus. Moreover, this phenomenon is largely dependent on activated transcription factor NF-kappaB. Both, the pharmacological blockade of NF-kappaB pathway by pyrrolidine dithiocarbamate (PDTC) or Bay11-7082 and genetic blockade by expression of a transdominant-negative super-repressor IkappaB-AA1 led to decreased aggregation.
Resumo:
BACKGROUND: Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-alpha) is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs) have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation. RESULTS: Here we describe for the first time the TNF-mediated signal transduction cascade in neural stem cells (NSCs) that results in increased proliferation. Moreover, we demonstrate IKK-alpha/beta-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment. The significant increase in proliferation in TNF-treated cells was indicated by increased neurosphere volume, increased bromodeoxyuridin (BrdU) incorporation and a higher total cell number. Furthermore, TNF strongly activated nuclear factor-kappa B (NF-kappaB) as measured by reporter gene assays and by an activity-specific antibody. Proliferation of control and TNF-treated NSCs was strongly inhibited by expression of the NF-kappaB super-repressor IkappaB-AA1. Pharmacological blockade of IkappaB ubiquitin ligase activity led to comparable decreases in NF-kappaB activity and proliferation. In addition, IKK-beta gene product knock-down via siRNA led to diminished NF-kappaB activity, attenuated cyclin D1 expression and finally decreased proliferation. In contrast, TGFbeta-activated kinase 1 (TAK-1) is partially dispensable for TNF-mediated and endogenous proliferation. Understanding stem cell proliferation is crucial for future regenerative and anti-tumor medicine. CONCLUSION: TNF-mediated activation of IKK-beta resulted in activation of NF-kappaB and was followed by up-regulation of the bona-fide target gene cyclin D1. Activation of the canonical NF-kappaB pathway resulted in strongly increased proliferation of NSCs.
Resumo:
We introduce semiconductor quantum dot-based fluorescence imaging with approximately 2-fold increased optical resolution in three dimensions as a method that allows both studying cellular structures and spatial organization of biomolecules in membranes and subcellular organelles. Target biomolecules are labelled with quantum dots via immunocytochemistry. The resolution enhancement is achieved by three-photon absorption of quantum dots and subsequent fluorescence emission from a higher-order excitonic state. Different from conventional multiphoton microscopy, this approach can be realized on any confocal microscope without the need for pulsed excitation light. We demonstrate quantum dot triexciton imaging (QDTI) of the microtubule network of U373 cells, 3D imaging of TNF receptor 2 on the plasma membrane of HeLa cells, and multicolor 3D imaging of mitochondrial cytochrome c oxidase and actin in COS-7 cells.
Resumo:
Although the adult brain contains neural stem cells (NSCs) that generate new neurons throughout life, these astrocyte-like populations are restricted to two discrete niches. Despite their terminally differentiated phenotype, adult parenchymal astrocytes can re-acquire NSC-like characteristics following injury, and as such, these 'reactive' astrocytes offer an alternative source of cells for central nervous system (CNS) repair following injury or disease. At present, the mechanisms that regulate the potential of different types of astrocytes are poorly understood. We used in vitro and ex vivo astrocytes to identify candidate pathways important for regulation of astrocyte potential. Using in vitro neural progenitor cell (NPC)-derived astrocytes, we found that exposure of more lineage-restricted astrocytes to either tumor necrosis factor alpha (TNF-α) (via nuclear factor-κB (NFκB)) or the bone morphogenetic protein (BMP) inhibitor, noggin, led to re-acquisition of NPC properties accompanied by transcriptomic and epigenetic changes consistent with a more neurogenic, NPC-like state. Comparative analyses of microarray data from in vitro-derived and ex vivo postnatal parenchymal astrocytes identified several common pathways and upstream regulators associated with inflammation (including transforming growth factor (TGF)-β1 and peroxisome proliferator-activated receptor gamma (PPARγ)) and cell cycle control (including TP53) as candidate regulators of astrocyte phenotype and potential. We propose that inflammatory signalling may control the normal, progressive restriction in potential of differentiating astrocytes as well as under reactive conditions and represent future targets for therapies to harness the latent neurogenic capacity of parenchymal astrocytes.
Resumo:
Sensitive quantitation of multiple cytokines can provide important diagnostic information during infection, inflammation and immunopathology. In this study sensitive immunoassay detection of human cytokines IL-1β, IL-6, IL-12p70 and TNFα is shown for singleplex and multiplex formats using a novel miniaturized ELISA platform. The platform uses a disposable plastic multi-syringe aspirator (MSA) integrating 8 disposable fluoropolymer microfluidic test strips, each containing an array of ten 200 mean i.d. microcapillaries coated with a set of monoclonal antibodies. Each MSA device thus performs 10 tests on 8 samples, delivering 80 measurements. Unprecedented levels of sensitivity were obtained with the novel fluoropolymer microfluidic material and simple colorimetric detection in a flatbed scanner. The limit of detection for singleplex detection ranged from 2.0 to 15.0 pg/ml, i.e. 35 and 713 femtomolar for singleplex cytokine detection, and the intra- and inter-assay coefficient of variation (CV) remained within 10%. In addition, a triplex immunoassay was developed for measuring IL-1β, IL-12p70 and TNFα simultaneously from a given sample in the pg/ml range. These assays permit high sensitivity measurement with rapid <15 min assay or detection from undiluted blood serum. The portability, speed and low-cost of this system are highly suited to point-of-care testing and field diagnostics applications.