965 resultados para THURINGIENSIS SUBSP ISRAELENSIS
Resumo:
Tuta absoluta (Meyrick) è un lepidottero originario dell’America meridionale, infeudato a pomodoro e ad altre solanacee coltivate e spontanee. Con l’attività trofica le larve causano mine fogliari e gallerie nei frutti, con conseguenti ingenti danni alle colture. T. absoluta è stato segnalato per la prima volta in Italia nel 2008 e in Piemonte nel 2009. Pertanto le ricerche sono state condotte per rilevarne la distribuzione in Piemonte, studiarne l’andamento di popolazione in condizioni naturali e controllate, e valutare l’efficacia di differenti mezzi di lotta al fine di definire le strategie di difesa. Il monitoraggio, condotto nel 2010, ha evidenziato come T. absoluta sia ormai largamente diffuso sul territorio regionale già pochi mesi dopo la segnalazione. L’insetto ha mostrato di prediligere condizioni climatiche più miti; infatti è stato ritrovato con maggiore frequenza nelle aree più calde. Il fitofago ha raggiunto densità di popolazione elevate a partire dalla seconda metà dell’estate, a ulteriore dimostrazione che, in una regione a clima temperato come il Piemonte, T. absoluta dà origine a infestazioni economicamente rilevanti solo dopo il culmine della stagione estiva. Per definire le strategie di lotta, sono state condotte prove in laboratorio, semi-campo e campo volte a valutare la tossicità nei confronti del lepidottero di preparati a base di emamectina benzoato, rynaxypyr, spinosad e Bacillus thuringiensis Berliner. In campo è stata verificata anche l’efficacia del miride dicifino Macrolophus pygmaeus (Rambur), reperibile in commercio. In tutte le prove, è stata riscontrata una maggiore efficacia di rynaxypyr ed emamectina benzoato. In campo M. pygmaeus ha mostrato difficoltà d’insediamento ed è stato in grado di contenere efficacemente il fitofago soltanto con bassi livelli d’infestazione. Per contro è stata costantemente osservata la presenza naturale di un altro miride dicifino Dicyphus errans (Wolff), che in laboratorio ha mostrato di non essere particolarmente disturbato dalle sostanze saggiate.
Resumo:
I investigated the systematics, phylogeny and biogeographical history of Juncaginaceae, a small family of the early-diverging monocot order Alismatales which comprises about 30 species of annual and perennial herbs. A wide range of methods from classical taxonomy to molecular systematic and biogeographic approaches was used. rnrnIn Chapter 1, a phylogenetic analysis of the family and members of Alismatales was conducted to clarify the circumscription of Juncaginaceae and intrafamilial relationships. For the first time, all accepted genera and those associated with the family in the past were analysed together. Phylogenetic analysis of three molecular markers (rbcL, matK, and atpA) showed that Juncaginaceae are not monophyletic. As a consequence the family is re-circumscribed to exclude Maundia which is pro-posed to belong to a separate family Maundiaceae, reducing Juncaginaceae to include Tetroncium, Cycnogeton and Triglochin. Tetroncium is weakly supported as sister to the rest of the family. The reinstated Cycnogeton (formerly included in Triglochin) is highly supported as sister to Triglochin s.str. Lilaea is nested within Triglochin s. str. and highly supported as sister to the T. bulbosa complex. The results of the molecular analysis are discussed in combination with morphological characters, a key to the genera of the family is given, and several new combinations are made.rnrnIn Chapter 2, phylogenetic relationships in Triglochin were investigated. A species-level phylogeny was constructed based on molecular data obtained from nuclear (ITS, internal transcribed spacer) and chloroplast sequence data (psbA-trnH, matK). Based on the phylogeny of the group, divergence times were estimated and ancestral distribution areas reconstructed. The monophyly of Triglochin is confirmed and relationships between the major lineages of the genus were resolved. A clade comprising the Mediterranean/African T. bulbosa complex and the American T. scilloides (= Lilaea s.) is sister to the rest of the genus which contains two main clades. In the first, the widespread T. striata is sister to a clade comprising annual Triglochin species from Australia. The second clade comprises T. palustris as sister to the T. maritima complex, of which the latter is further divided into a Eurasian and an American subclade. Diversification in Triglochin began in the Miocene or Oligocene, and most disjunctions in Triglochin were dated to the Miocene. Taxonomic diversity in some clades is strongly linked to habitat shifts and can not be observed in old but ecologically invariable lineages such as the non-monophyletic T. maritima.rnrnChapter 3 is a collaborative revision of the Triglochin bulbosa complex, a monophyletic group from the Mediterranean region and Africa. One new species, Triglochin buchenaui, and two new subspecies, T. bulbosa subsp. calcicola and subsp. quarcicola, from South Africa were described. Furthermore, two taxa were elevated to species rank and two reinstated. Altogether, seven species and four subspecies are recognised. An identification key, detailed descriptions and accounts of the ecology and distribution of the taxa are provided. An IUCN conservation status is proposed for each taxon.rnrnChapter 4 deals with the monotypic Tetroncium from southern South America. Tetroncium magellanicum is the only dioecious species in the family. The taxonomic history of the species is described, type material is traced, and a lectotype for the name is designated. Based on an extensive study of herbarium specimens and literature, a detailed description of the species and notes on its ecology and conservation status are provided. A detailed map showing the known distribution area of T. magellanicum is presented. rnrnIn Chapter 5, the flower structure of the rare Australian endemic Maundia triglochinoides (Maundiaceae, see Chapter 1) was studied in a collaborative project. As the morphology of Maundia is poorly known and some characters were described differently in the literature, inflorescences, flowers and fruits were studied using serial mictrotome sections and scanning electron microscopy. The phylogenetic placement, affinities to other taxa, and the evolution of certain characters are discussed. As Maundia exhibits a mosaic of characters of other families of tepaloid core Alismatales, its segregation as a separate family seems plausible.
Resumo:
Weizenstroh als erneuerbare Ressource zur Produktion von Biopolymeren und wichtigen Grundchemikalien stellt eine ökologisch sinnvolle Alternative dar. Durch die vom PFI durchgeführte Thermodruckhydrolyse konnte das Weizenstroh und die darin enthaltenen Zucker fast vollständig mobilisiert werden. Ein umfangreiches Screening nach Organismen, welche die Zucker des Weizenstrohs verwerten konnten, ergab, dass einige wenige Stämme zur PHB-Bildung aus Xylose befähigt waren (10 %). Zur PHB-Synthese aus Glucose waren indes ca. doppelt so viele Organismen in der Lage (20 %). Zwei der insgesamt 118 untersuchten Organismen zeigten besonders gute PHB-Bildung sowohl mit Xylose als auch mit Glucose als Substrat. Dabei handelte es sich um die hauseigenen Stämme Bacillus licheniformis KHC 3 und Bacillus megaterium KNaC 2. Nach Enttoxifizierung der hemicellulosischen Fraktion konnte diese als C-Quelle im Mineral Medium eingesetzt werden. Burkholderia sacchari DSM 17165 und Hydrogenophaga pseudoflava DSM 1034, sowie die hauseigenen Isolate Bacillus licheniformis KHC 3 und Bacillus megaterium KNaC 2 wurden für die Synthese von PHB aus der hemicellulosischen Fraktion verwendet. Die Zucker der hemicellulosischen Fraktion (Xylose, Glucose, Arabinose) konnten durch diese Organismen zur PHB-Synthese genutzt werden. Hierbei stellte sich heraus, dass die beiden Bacillus-Stämme besser zur Produktion von PHB aus dem hemicellulosischen Hydrolysat geeignet waren als die Stämme der DSMZ. Die alternative Umsetzung der im hemicellulosischem Hydrolysat enthaltenen Zucker (Xylose, Glucose und Arabinose) in die wichtigen Grundchemikalien Lactat und Acetat konnte durch die Verwendung von heterofermentativen Milchsäurebakterien verwirklicht werden. Die Bildung dieser wichtigen Grundchemikalien stellt eine interessante Alternative zur PHB-Synthese dar. Die Menge an teuren Zusätzen wie Tomatensaft, welcher für das Wachstum der MSB essentiell war, konnte reduziert werden. Die Glucose der zweiten Fraktion des Weizenstrohs, der cellulosischen Fraktion, konnte ebenfalls durch den Einsatz von Mikroorganismen in PHB umgewandelt werden. Kommerzielle Cellulasen der Firma Novozymes konnten große Mengen an Glucose (≥10 g/l) aus der cellulosischen Fraktion freisetzen. Diese freie Glucose wurde mit Hilfe von Cupriavidus necator DSM 545, Cupriavidus necator NCIMB 11599, Bacillus licheniformis KHC 3 und Bacillus megaterium KNaC 2 zu PHB fermentiert. Wie auch beim hemicellulosischen Hydrolysat konnten hier die beiden Bacillus-Stämme die besten Ergebnisse erzielen. Bei ihnen machte die PHB mehr als die Hälfte der Trockenmasse aus. Die Abtrennung des Zielprodukts ohne die Verwendung von umweltschädlichen Lösungsmitteln wurde durch die Lyse der Zielzellen durch eigens isolierte Enzyme aus Streptomyceten verwirklicht. Die Zelllyse durch die Enzyme aus Streptomyces globisporus subsp. caucasius DSM 40814 und Streptomyces albidoflavus DSM 40233 war erfolgreich und zeigte vor allem bei den Bacillen hohe Wirkung (83 % und 99 % Zelllyse). Bei dem Gram-negativen Organismus Cupriavidus necator DSM 428 konnte die anfangs niedrige Zelllyse von 38 % durch Ultraschallbehandlung auf ca. 75 % erhöht werden.
Resumo:
A 2-year-old, female goat from Connecticut was submitted for necropsy with a 5-day history of pyrexia and intermittent neurologic signs, including nystagmus, seizures, and circling. Postmortem examination revealed suppurative meningitis. Histologic examination of the brain revealed that the meninges were diffusely infiltrated by moderate numbers of lymphocytes, macrophages, and fibrin, with scattered foci of dense neutrophilic infiltrate. Culture of pus and brainstem yielded typical mycoplasma colonies. DNA sequencing of the 16S ribosomal RNA gene revealed 99% sequence homology with Mycoplasma mycoides subspecies capri and Mycoplasma mycoides subspecies mycoides Large Colony biotype, which are genetically indistinguishable and likely to be combined as a single subspecies labeled M. mycoides subsp. capri. The present case is unusual in that not only are mycoplasma an uncommon cause of meningitis in animals, but additionally, in that all other reported cases of mycoplasma meningitis in goats, systemic lesions were also present. In the present case, meningitis was the only lesion, thus illustrating the need to consider mycoplasma as a differential diagnosis for meningitis in goats.
Resumo:
RTX toxins are bacterial pore-forming toxins that are particularly abundant among pathogenic species of Pasteurellaceae, in which they play a major role in virulence. RTX toxins of several primary pathogens of the family of Pasteurellaceae are directly involved in causing necrotic lesions in the target organs. Many RTX toxins are known as haemolysins because they lyse erythrocytes in vitro, an effect that is non-specific, but which serves as a useful marker in bacteriological identification and as an easily measurable signal in vitro in experimental studies. More recent studies have shown that the specific targets of most RTX toxins are leukocytes, with RTX toxins binding to the corresponding beta-subunit (CD18) of beta2 integrins and then exerting cytotoxic activity. After uptake by the target cell, at sub-lytic concentrations, some RTX toxins are transported to mitochondria and induce apoptosis. For several RTX toxins the binding to CD18 has been shown to be host specific and this seems to be the basis for the host range specificity of these RTX toxins. Observations on two very closely related species of the Pasteurellaceae family, Actinobacillus suis, a porcine pathogen particularly affecting suckling pigs, and Actinobacillus equuli subsp. haemolytica, which causes pyosepticaemia in new-born foals (sleepy foal disease), have revealed that they express different RTX toxins, named ApxI/II and Aqx, respectively. These RTX toxins are specifically cytotoxic for porcine and equine leukocytes, respectively. Furthermore, the ApxI and Aqx toxins of these species, when expressed in an isogenetic background in Escherichia coli, are specifically cytotoxic for leukocytes of their respective hosts. These data indicate the determinative role of RTX toxins in host specificity of pathogenic species of Pasteurellaceae.
Resumo:
A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.
Resumo:
Bacterial infections present a major challenge in equine medicine. Therapy should be based on bacteriological diagnosis to successfully minimize the increasing number of infections caused by multidrug-resistant bacteria. The present study is a retrospective analysis of bacteriological results from purulent infections in horses admitted at the University Equine Clinic of Bern from 2004 to 2008. From 378 samples analyzed, 557 isolates were identified, of which Staphylococcus aureus, Streptococcus equi subsp. zooepidemicus and coliforms were the most common. Special attention was paid to infections with methicillin-resistant S. aureus (MRSA) ST398 and a non-MRSA, multidrug-resistant S. aureus clone ST1 (BERN100). Screening of newly-admitted horses showed that 2.2 % were carriers of MRSA. Consequent hygiene measures taken at the Clinic helped to overcome a MRSA outbreak and decrease the number of MRSA infections.
Resumo:
Streptococcus spp. and related bacteria form a large group of organisms which are associated with bovine intramammary Infections (IMI). Some of them are the well-known mastitis pathogens Streptococcus uberis and Streptococcus agalactiae. In addition, there are a considerable number of these gram-positive, catalase-negative cocci (PNC) with unclear mastitic pathogenicity such as Aerococcus viridans which make the conventional diagnostics of PNC difficult. One diagnostic, API 20 Strep (API, Biomerieux) is recommended which, as a phenotypic assay, involves a series of miniaturized biochemical tests. Recently, preference is given to genotypic identification methods. In particular, sequencing of the 16S rRNA gene allows highly reproducible and accurate identification of bacteria and permits discovery of novel, clinically relevant bacteria. As a consequence, the aim of the present study was to compare identification of IMI-associated PNC by the API method as well as by sequencing of their 16S rRNA gene (16S). Furthermore, the correlation of these bacteria to bovine chronic mastitis and their phylogeny was investigated. 102 PNC isolated from single quarter milk samples were identified by API and 16S sequencing. Considering Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae and Streptococcus agalactiae, both methods generated fully concordant results. In contrast, a very high disconcordance was observed for most of the other PNC, in particular Enterococcus spp., Aerococcus viridans and the viridans streptococci were shown as apathogenic. Lactococcus garvieae was found to be an opportunistic pathogen causing IMI during late lactation. In addition, PNC isolated from milk were frequently observed together with other bacteria, in particular with Staphylococcus spp. In these cases, the levels of somatic cell counts (SCC) were determined by the specific PNC present in the sample. Considering PNC phylogeny based on 16S sequencing, 3 major clusters were observed. They included all the common mastitis pathogens (cluster I), the Lactococcus spp., Enterococcus spp. and Aerococcus spp. (cluster II) and all the viridans streptococci (cluster III).
Resumo:
Aeromonas salmonicida subsp. salmonicida contains a functional type III secretion system that is responsible for the secretion of the ADP-ribosylating toxin AexT. In this study, the authors identified AopP as a second effector protein secreted by this system. The aopP gene was detected in both typical and atypical A. salmonicida isolates and was found to be encoded on a small plasmid of approximately 6.4 kb. Sequence analysis indicates that AopP is a member of the YopJ family of effector proteins, a group of proteins that interfere with mitogen-activated protein kinase (MAPK) and/or nuclear factor kappa B (NF-kappaB) signalling pathways. AopP inhibits the NF-kappaB pathway downstream of IkappaB kinase (IKK) activation, while a catalytically inactivated mutant, AopPC177A, does not possess this inhibitory effect. Unlike other effectors of the YopJ family, such as YopJ and VopA, AopP does not inhibit the MAPK signalling pathway.
Discovery of insertion element ISCfe1: a new tool for Campylobacter fetus subspecies differentiation
Resumo:
The species Campylobacter fetus is divided into the subspecies C. fetus subsp. venerealis (CFV) and C. fetus subsp. fetus (CFF). CFV is the causative agent of bovine genital campylobacteriosis, a highly contagious venereal disease that may lead to serious reproductive problems, including sterility and abortion. In contrast, CFF can be isolated from the gastrointestinal tract of a wide range of host species, is associated with abortion in sheep and cattle, and can also be isolated from local and systemic infections in humans. Despite differences in host and niche preferences, microbiological differentiation of the two subspecies of C. fetus is extremely difficult. This study describes the identification of a new insertion element, ISCfe1, which is present exclusively in CFV strains, with highly conserved specific ISCfe1 insertion sites. The results are useful for identification and differentiation of the two C. fetus subspecies and will help in understanding the evolution and pathogenesis of C. fetus.
Resumo:
Francisella tularensis, a small Gram-negative facultative intracellular bacterium, is the causative agent of tularaemia, a severe zoonotic disease transmitted to humans mostly by vectors such as ticks, flies and mosquitoes. The disease is endemic in many parts of the northern hemisphere. Among animals, the most affected species belong to rodents and lagomorphs, in particular hares. However, in the recent years, many cases of tularaemia among small monkeys in zoos were reported. We have developed a real-time PCR that allows to quantify F. tularensis in tissue samples. Using this method, we identified the spleen and the kidney as the most heavily infected organ containing up to 400 F. tularensis bacteria per simian host cell in two common squirrel monkeys (Saimiri sciureus) from a zoo that died of tularaemia. In other organs such as the brain, F. tularensis was detected at much lower titres. The strain that caused the infection was identified as F. tularensis subsp. holarctica biovar I, which is susceptible to erythromycin. The high number of F. tularensis present in soft organs such as spleen, liver and kidney represents a high risk for persons handling such carcasses and explains the transmission of the disease to a pathologist during post-mortem analysis. Herein, we show that real-time PCR allows a reliable and rapid diagnosis of F. tularensis directly from tissue samples of infected animals, which is crucial in order to attempt accurate prophylactic measures, especially in cases where humans or other animals have been exposed to this highly contagious pathogen.
Resumo:
Several bacteria belonging to the family Pasteurellaceae are potential pathogens in rabbits. In particular, Pasteurella multocida is considered to be important, and outbreaks caused by this species result in considerable economic losses in rabbitries. However, Pasteurellaceae spp. isolated from rabbits are poorly characterized, and thus, proper identification of P. multocida isolates from these animals is problematic and often unsatisfactory, thereby hampering epidemiological investigations. Therefore, 228 isolates from rabbit populations originating from a breeding and fattening organization with group management and postmortem cases with pasteurellosis from individual owners were phenotypically and genotypically analyzed using biochemical tests and repetitive extragenic palindromic polymerase chain reaction (REP-PCR). Furthermore, 41 samples representing observed phenotypes were selected for phylogenetic analysis using 16S ribosomal RNA and rpoB genes. The REP-PCR typing and phylogenetic analyses correlated well and appeared to be distinct molecular methods for characterization of rabbit isolates. Phenotyping, however, diverged from molecular recognition, reflecting the problematic conventional diagnosis of these strains. The fermentation of sorbitol appeared to be an imprecise indicator for P. multocida subspecies classification. According to REP-PCR and sequencing results, 82% of the isolates were characterized as P. multocida subsp. multocida, 3% as P. multocida subsp. septica, and 5% as P. multocida. Further, 5% were identified as Pasteurella canis. The other 5% represented a homogeneous group of unknown species belonging to the Pasteurellaceae. Samples obtained from individual postmortem cases demonstrated a higher phenotypic and genetic heterogeneity than samples from group management rabbits.
Resumo:
We conducted a molecular analysis of Francisella tularensis strains isolated in Switzerland and identified a specific subpopulation belonging to a cluster of F. tularensis subsp. holarctica that is widely dispersed in central and western continental Europe. This subpopulation was present before the tularemia epidemics on the Iberian Peninsula.
Resumo:
Actinobacillus suis-like organisms (ASLOs) have been isolated from the genital, respiratory, and digestive tracts of healthy adult horses, horses with respiratory disease, and septic foals. Two foals with congenital hypothyroidism-dysmaturity syndrome from separate farms developed ASLO infection. At necropsy, both had contracted carpal flexor tendons, thyroid hyperplasia, and thrombotic and necrotizing mesenteric lymphangitis and lymphadenitis; one foal also had mandibular prognathism. Numerous ASLOs were isolated from tissues from both foals, including intestine. Biochemical testing and mass spectrometric analysis of the two Actinobacillus isolates did not allow unequivocal identification. Comparative genetic analysis was done on these and similar isolates, including phylogeny based on 16S rRNA, rpoB and recN genes, as well as RTX (repeat in toxin) toxin typing of apxIA-apxIVA and aqxA genes. One isolate was identified as Actinobacillus suis sensu stricto, based on the presence of apxIA and apxIIA but not aqxA, whereas the other isolate had aqxA but neither apxIA nor apxIIA, consistent with A equuli ssp haemolyticus. Based on genotypic analysis of the isolates included for comparison, 3 of 3 equine ASLOs and 2 of 5 A equuli isolates were reclassified as A equuli subsp haemolyticus, emphasizing the importance of toxin genotyping in accurate classification of actinobacilli.
Resumo:
Equine Actinobacillus species were analysed phylogenetically by 16S rRNA gene (rrs) sequencing focusing on the species Actinobacillus equuli, which has recently been subdivided into the non-haemolytic A. equuli subsp. equuli and the haemolytic A. equuli subsp. haemolyticus. In parallel we determined the profile for RTX toxin genes of the sample of strains by PCR testing for the presence of the A. equuli haemolysin gene aqx, and the toxin genes apxI, apxII, apxIII and apxIV, which are known in porcine pathogens such as Actinobacillus pleuropneumoniae and Actinobacillus suis. The rrs-based phylogenetic analysis revealed two distinct subclusters containing both A. equuli subsp. equuli and A. equuli subsp. haemolyticus distributed through both subclusters with no correlation to taxonomic classification. Within one of the rrs-based subclusters containing the A. equuli subsp. equuli type strain, clustered as well the porcine Actinobacillus suis strains. This latter is known to be also phenotypically closely related to A. equuli. The toxin gene analysis revealed that all A. equuli subsp. haemolyticus strains from both rrs subclusters specifically contained the aqx gene while the A. suis strains harboured the genes apxI and apxII. The aqx gene was found to be specific for A. equuli subsp. haemolyticus, since A. equuli subsp. equuli contained no aqx nor any of the other RTX genes tested. The specificity of aqx for the haemolytic equine A. equuli and ApxI and ApxII for the porcine A. suis indicates a role of these RTX toxins in host species predilection of the two closely related species of bacterial pathogens and allows PCR based diagnostic differentiation of the two.