877 resultados para Symbiotic fungus inhibition
Resumo:
Abnormal vascular smooth muscle cell (VSMC) proliferation is known to play an important role in the pathogenesis of atherosclerosis, restenosis and instent stenosis. Recent studies suggest that salicylates, in addition to inhibiting cyclooxygenase activity, exert an antiproliferative effect on VSMC growth both in vitro and in vivo. However, whether all non-steroidal anti-inflammatory drugs (NSAID) exert similar antiproliferative effects on VSMCs, and do so via a common mechanism of action, remains unknown. In the present study, we demonstrated that the NSAIDs, aspirin, ibuprofen and sulindac induced a dose-dependent inhibition of proliferation in rat A10 VSMCs (IC50 = 1666 mumol/L, 937 mumol/L and 520 mumol/L, respectively). These drugs did not show significant cytotoxic effects as determined by LDH release assay, even at the highest concentrations tested (aspirin, 5000 mumol/L; ibuprofen, 2500 mumol/L; and sulindac, 1000 mumol/L). Flow cytometric analyses showed that a 48 h exposure of A10 VSMCs to ibuprofen (1000 mumol/L) and sulindac (750 mumol/L) led to a significant G1 arrest (from 68.7 +/- 2.0% of cells in G1 to 76.6 +/- 2.2% and 75.8 +/- 2.2%, respectively, p < 0.05). In contrast, aspirin (2500 mumol/L) failed to induce a significant G1 arrest (68.1 +/- 5.2%). Clearer evidence of a G1 block was obtained by treatment of cells with the mitotic inhibitor, nocodazole (40 ng/ml), for the final 24 h of the experiment. Under these conditions, aspirin still failed to induce a G1 arrest (from 25.9 +/- 10.9% of cells in G1 to 19.6 +/- 2.3%) whereas ibuprofen and sulindac led to a significant accumulation of cells in G1(51.8% +/- 17.2% and 54.1% +/- 10.6%, respectively, p < 0.05). These results indicate that ibuprofen and sulindac inhibit VSMC proliferation by arresting the cell cycle in the G1 phase whereas the effect of aspirin appears to be independent of any special phase of the cell cycle. Irrespective of mechanism, our results suggest that NSAIDs might be of benefit to the treatment of vascular proliferative disorders.
Resumo:
This study was an attempt to identify the epistemological roots of knowledge when students carry out hands-on experiments in physics. We found that, within the context of designing a solution to a stated problem, subjects constructed and ran thought experiments intertwined within the processes of conducting physical experiments. We show that the process of alternating between these two modes- empirically experimenting and experimenting in thought- leads towards a convergence on scientifically acceptable concepts. We call this process mutual projection. In the process of mutual projection, external representations were generated. Objects in the physical environment were represented in an imaginary world and these representations were associated with processes in the physical world. It is through this coupling that constituents of both the imaginary world and the physical world gain meaning. We further show that the external representations are rooted in sensory interaction and constitute a semi-symbolic pictorial communication system, a sort of primitive 'language', which is developed as the practical work continues. The constituents of this pictorial communication system are used in the thought experiments taking place in association with the empirical experimentation. The results of this study provide a model of physics learning during hands-on experimentation.
Resumo:
The death of nigral neurons in Parkinson's disease is thought to involve the formation of the endogenous neurotoxin, 5-S-cysteinyl-dopamine. In the present study, we show that the polyphenols, (+)-catechin and caffeic acid, which contain a catechol moiety, inhibit tyrosinase-induced formation of 5-S-eysteinyl-dopamine via their capacity to undergo tyro sina se-induced oxidation to yield cysteinyl-polyphenol adducts. In contrast, the inhibition afforded by the flavanone, hesperetin, was not accompanied by the formation of cysteinyl-hesperetin adducts, indicating that it may inhibit via direct interaction with tyrosinase. Whilst the stilbene resveratrol also inhibited 5-S-eysteinyl-dopamine formation, this was accompanied by the formation of dihydrobenzothiazine, a strong neurotoxin. Our data indicate that the inhibitory effects of polyphenols against 5-S-cysteinyl-dopamine formation are structure-dependent and shed further light on the mechanisms by which polyphenols exert protection against neuronal injury relevant to neurodegenerative diseases. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The cellular actions of genistein, and its in vivo metabolites, are believed to mediate the decreased risk of breast cancer associated with high soy consumption. The genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone (THIF), induced G2-M cell cycle arrest in T47D tumorigenic breast epithelial cells via a mechanism involving the activation of ataxia telangiectasia and Rad3-related kinase (ATR) via its phosphorylation at Ser(428). This activation of ATR appeared to result from THIF-induced increases in intracellular oxidative stress, a depletion of cellular GSH and an increase in DNA strand breakage. THIF treatment also led to an inhibition of cdc2, which was accompanied by the phosphorylation of both p53 (Ser(15)) and Chk1 (Ser(296)) and the de-activation of cdc25C phosphatase. We suggest the anti-proliferative actions of THIF may be mediated by initial oxidative DNA damage, activation of ATR and downstream regulation of the p53 and Chk1 pathways leading to cell cycle arrest in G2-M. This may represent one mechanism by which genistein exerts its cellular activity in vivo. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
We have studied 'food grade' sialyloligosaccharides (SOS) as anti-adhesive drugs or receptor analogues, since the terminal sialic acid residue has already been shown to contribute significantly to the adhesion and pathogenesis of the Vibrio cholerae toxin (Ctx). GM1-oligosaccharide (GM1-OS) was immobilized into a supporting POPC lipid bilayer onto a surface plasmon resonance (SPR) chip, and the interaction between uninhibited Ctx and GM1-OS-POPC was measured. SOS inhibited 94.7% of the Ctx binding to GM1-OS-POPC at 10 mg/mL. The SOS EC50 value of 5.521 mg/mL is high compared with 0.2811 mu g/mL (182.5 pM or 1.825 x 10(-10) M) for GM1-OS. The commercially available sialyloligosaccharide (SOS) mixture Sunsial E (R) is impure, containing one monosialylated and two disialylated oligosaccharides in the ratio 9.6%. 6.5% and 17.5%, respectively, and 66.4% protein. However, these inexpensive food-grade molecules are derived from egg yolk and could be used to fortify conventional food additives, by way of emulsifiers, sweeteners and/or preservatives. The work further supports our hypothesis that SOS could be a promising natural anti-adhesive glycomimetic against Ctx and prevent subsequent onset of disease. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
The aim of the study was to investigate the ability of pectic oligosaccharides (POS) to inhibit adhesion of three strains of verotoxigenic Escherichia coli, three strains of enteropathogenic E. coli, and one nonclinical strain of Desulfovibrio desulfuricans to human intestinal epithelial cell cultures. Lactobacillus acidophilus and Lactobacillus gasseri were included for comparison. Attachment wits determined in the human HT29 cell line by viable Count of adherent bacteria. POS in buffer at pH 7.2 were antiadhesive at a dose of 2.5 mg ml(-1), reducing adhesion of enteropathogenic E. coli and verotoxigenic E. coli strains to less than 30% of control values. Concentrations resulting in 50% inhibition ranged from 0.15 to 0.46 mg ml(-1). L. acidophilus was not significantly affected. but adhesion of L. gasseri was reduced to 29% of the control value. POS reduced the adhesion of D. desulfuricans to 0.33% of the control value. POS also had a protective effect against E. coli verocytotoxins VT1 and VT2 at concentrations of 0.01 and 1 mu g ml(-1), respectively.
Resumo:
The ability of chito-oligosaccharides (COS) to inhibit selected intestinal bacteria was investigated. COS at 2.5 mg ml(-1) had no significant effect on the adhesion of three strains of verotoxigenic Escherichia coli (VTEC), Lactobacillus pentosus, L. casei or L. gasseri to human HT29 cells in tissue culture. However, COS significantly inhibited adhesion of three strains of enteropathogenic E. coli (EPEC) to below 30% of the level of adhesion seen in the controls. Dose-response curves were constructed to further characterise the inhibition of EPEC strains to HT29 cells. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Background: The regulation of platelet function by pharmacological agents that modulate platelet signaling haspharmacolo proven a successful approach to the prevention of thrombosis. A variety of molecules present in the diet have been shown to inhibit platelet activation, including the antioxidant quercetin. Objectives: In this report we investigate the molecular mechanisms through which quercetin inhibits collagen-stimulated platelet aggregation. Methods: The effect of quercetin on platelet aggregation, intracellular calcium release, whole cell tyrosine phosphorylation and intracellular signaling events including tyrosine phosphorylation and kinase activity of proteins involved in the collagen-stimulated glycoprotein (GP) signaling pathway were investigated. Results: We report that quercetin inhibits collagen-stimulated whole cell protein tyrosine phosphorylation and intracellular mobilization of calcium, in a concentration-dependent manner. Quercetin was also found to inhibit various events in signaling generated by the collagen receptor GPVI. This includes collagen-stimulated tyrosine phosphorylation of the Fc receptor gamma-chain, Syk, LAT and phospholipase Cgamma2. Inhibition of phosphorylation of the Fc receptor gamma-chain suggests that quercetin inhibits early signaling events following stimulation of platelets with collagen. The activity of the kinases that phosphorylate the Fc receptor gamma-chain, Fyn and Lyn, as well as the tyrosine kinase Syk and phosphoinositide 3-kinase was also inhibited by quercetin in a concentration-dependent manner, both in whole cells and in isolation. Conclusions: The present results provide a molecular basis for the inhibition by quercetin of collagen-stimulated platelet activation, through inhibition of multiple components of the GPVI signaling pathway, and may begin to explain the proposed health benefits of high quercetin intake.
Resumo:
Extra virgin olive oil is rich in phenolic compounds which are believed to exert beneficial effects against many pathological processes, including the development of colon cancer. We show that one of the major polyphenolic constituents of extra virgin olive oil, hydroxytyrosol (HT), exerts strong anti-proliferative effects against human colon adenocarcinoma cells via its ability to induce a cell cycle block in G2/M. These antiproliferative effects were preceded by a strong inhibition of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and a downstream reduction of cyclin D I expression, rather than by inhibition of p38 activity and cyclooxygenase-2 (COX-2) expression. These findings are of particular relevance due to the high colonic concentration of HT compared to the other olive oil polyphenols and may help explain the inverse link between colon cancer and olive oil consumption.
Resumo:
We investigated the anti-proliferative effects of an olive oil polyphenolic extract on human colon adenocarcinoma cells. Analysis indicated that the extract contained hydroxytyrosol, tyrosol and the various secoiridoid derivatives, including oleuropein. This extract exerted a strong inhibitory effect on cancer cell proliferation, which was linked to the induction of a G2/M phase cell cycle block. Following treatment with the extract (50 mu g/ml) the number of cells in the G2/M phase increased to 51.82 +/- 2.69% relative to control cells (15.1 +/- 2.5%). This G2/M block was mediated by the ability of olive oil polyphenols (50 mu g/ml) to exert rapid inhibition of p38 (38.7 +/- 4.7%) and CREB (28.6 +/- 5.5%) phosphorylation which led to a downstream reduction in COX-2 expression (56.9 +/- 9.3%). Our data suggest that olive oil polyphenols may exert chemo preventative effects in the large intestine by interacting with signalling pathways responsible for colorectal cancer development. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
A mammalian cell line, J774, was susceptible to both synthetic and natural photosensitising agents after irradiation with long-wave ultraviolet light. Both UV-A light and psoralen did not affect cell growth individually; a reduction in visual confluency was achieved only when psoralen and UV-A light were used in combination. The maximum visual confluency decreased by 55% when 50 ppm psoralen was added to a growing culture and irradiated with UV light for 3 min. Decreasing the UV-A exposure times from 3 min to 3 s did not greatly affect the maximum total visual confluence reached using different synthetic psoralen concentrations, but did affect the rate at which cell death occurred. The 3 min exposure time resulted in a rapid decrease in cell numbers in comparison to 3 s exposure time. Synthetic psoralen was found to have an increasing photosensitising activity with increasing concentration using a logarithmic shift between 0.5 ppm and 50 ppm. A visual confluency of 45% was achieved using concentrations of 50 ppm psoralen, and 70% visual confluency using 0.5 ppm. Natural mixtures of furanocoumarins containing psoralens, obtained from two separate parsley sources, were found to have greater efficacy at inhibiting the growth cycle of the cells when compared to the synthetic psoralen.
Resumo:
The activation of presynaptic G protein-coupled receptors (GPCRs) is widely reported to inhibit transmitter release; however, the lack of accessibility of many presynaptic terminals has limited direct analysis of signalling mediators. We studied GPCR-mediated inhibition of fast cholinergic transmission between superior cervical ganglion neurones (SCGNs) in culture. The adrenoceptor agonist noradrenaline (NA) caused a dose-related reduction in evoked excitatory postsynaptic potentials (EPSPs). NA-induced EPSP decrease was accompanied by effects on the presynaptic action potential (AP), reducing AP duration and amplitude of the after-hyperpolarization (AHP), without affecting the pre- and postsynaptic membrane potential. All effects of NA were blocked by yohimbine and synaptic transmission was reduced by clonidine, consistent with an action at presynaptic alpha 2-adrenoceptors. NA-induced inhibition of transmission was sensitive to pre-incubation of SCGNs with pertussis toxin (PTX), implicating the involvement of G alpha(i)/(o)beta y subunits. Expression of G alpha transducin, an agent which sequesters G protein beta gamma (G beta y) subunits, in the presynaptic neurone caused a time-dependent attenuation of NA-induced inhibition. Injection of purified G beta gamma subunits into the presynaptic neurone inhibited transmission, and also reduced the AHP amplitude. Furthermore, NA-induced inhibition was occluded by pre-injection of G beta gamma subunits. The Ca2+ channel blocker Cd2+ mimicked NA effects on transmitter release. Cd2+, NA and G beta gamma subunits also inhibited somatic Ca2+ current. In contrast to effects on AP-evoked transmitter release, NA had no clear action on AP-independent EPSPs induced by hypertonic solutions. These results demonstrate that G beta gamma subunits functionally mediate inhibition of transmitter release by alpha 2-adrenoceptors and represent important regulators of synaptic transmission at mammalian presynaptic terminals.
Resumo:
Previous studies of the Stroop task propose two key mediators: the prefrontal and cingulate cortices but hints exist of functional specialization within these regions. This study aimed to examine the effect of task modality upon the prefrontal and cingulate response by examining the response to colour, number, and shape Stroop tasks whilst BOLD fMRI images were acquired on a Siemens 3 T MRI scanner. Behavioural analyses indicated facilitation and interference effects and a noticeable effect of task difficulty. Some modular effects of modality were observed in the prefrontal cortex that survived exclusion of task difficulty related activations. No effect of task-relevant information was observed in the anterior cingulate. Future comparisons of the mediation of selective attention need to consider the effects of task context and task difficulty. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Selecting a stimulus as the target for a goal-directed movement involves inhibiting other competing possible responses. Inhibition has generally proved hard to study behaviorally, because it results in no measurable output. The effect of distractors on the shape of oculomotor and manual trajectories provide evidence of such inhibition. Individual saccades may deviate initially either towards, or away from, a competing distractor - the direction and extent of this deviation depends upon saccade latency, target predictability and the target to distractor separation. The experiment reported here used these effects to show how inhibition of distractor locations develops over time. Distractors could be presented at various distances from unpredictable and predictable targets in two separate experiments. The deviation of saccade trajectories was compared between trials with and without distractors. Inhibition was measured by saccade trajectory deviation. Inhibition was found to increase as the distractor distance from target decreased but was found to increase with saccade latency at all distractor distances (albeit to different peaks). Surprisingly, no differences were found between unpredictable and predictable targets perhaps because our saccade latencies were generally long (similar to 260-280 ms.). We conclude that oculomotor inhibition of saccades to possible target objects involves the same mechanisms for all distractor distances and target types. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Selecting a stimulus as the target for a goal-directed movement involves inhibiting other competing possible responses. Both target and distractor stimuli activate populations of neurons in topographic oculomotor maps such as the superior colliculus. Local inhibitory interconnections between these populations ensure only one saccade target is selected. Suppressing saccades to distractors may additionally involve inhibiting corresponding map regions to bias the local competition. Behavioral evidence of these inhibitory processes comes from the effects of distractors on oculomotor and manual trajectories. Individual saccades may initially deviate either toward or away from a distractor, but the source of this variability has not been investigated. Here we investigate the relation between distractor-related deviation of trajectory and saccade latency. Targets were presented with, or without, distractors, and the deviation of saccade trajectories arising from the presence of distractors was measured. A fixation gap paradigm was used to manipulate latency independently of the influence of competing distractors. Shorter- latency saccades deviated toward distractors and longer-latency saccades deviated away from distractors. The transition between deviation toward or away from distractors occurred at a saccade latency of around 200 ms. This shows that the time course of the inhibitory process involved in distractor related suppression is relatively slow.