994 resultados para Surfaces - Measurements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This technical memorandum reports on the noise measurement results performed on MBARI's Ventana ROV. The measurement procedure and the instrumentation for this experiment are also described. This report is organized as follows: Section 1 provides some introductory information. Section 2 describes the experiment and the instrumentation. Section 3 presents the results. Section 4 contains some concluding remarks. (PDF contains 16 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation slides supporting the Janet network end to end performance initiative workshop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Workshop "Making Oxygen Measurements Routine Like Temperature" was convened in St. Petersburg, Florida, January 4th - 6th, 2006. This event was sponsored by the University of South Florida (USF) College of Marine Science, an ACT partner institution and co-hosted by the Ocean Research Interactive Observatory Networks (ORION). Participants from researcldacademia, resource management, industry, and engineering sectors collaborated with the aim to foster ideas and information on how to make measuring dissolved oxygen a routine part of a coastal or open ocean observing system. Plans are in motion to develop large scale ocean observing systems as part of the US Integrated Ocean Observing System (100s; see http://ocean.us) and the NSF Ocean Observatory Initiative (001; see http://www.orionprogram.org/00I/default.hl). These systems will require biological and chemical sensors that can be deployed in large numbers, with high reliability, and for extended periods of time (years). It is also likely that the development cycle for new sensors is sufficiently long enough that completely new instruments, which operate on novel principles, cannot be developed before these complex observing systems will be deployed. The most likely path to development of robust, reliable, high endurance sensors in the near future is to move the current generation of sensors to a much greater degree of readiness. The ACT Oxygen Sensor Technology Evaluation demonstrated two important facts that are related to the need for sensors. There is a suite of commercially available sensors that can, in some circumstances, generate high quality data; however, the evaluation also showed that none of the sensors were able to generate high quality data in all circumstances for even one month time periods due to biofouling issues. Many groups are attempting to use oxygen sensors in large observing programs; however, there often seems to be limited communication between these groups and they often do not have access to sophisticated engineering resources. Instrument manufacturers also do not have sufficient resources to bring sensors, which are marketable, but of limited endurance or reliability, to a higher state of readiness. The goal of this ACT/ORION Oxygen Sensor Workshop was to bring together a group of experienced oceanographers who are now deploying oxygen sensors in extended arrays along with a core of experienced and interested academic and industrial engineers, and manufacturers. The intended direction for this workshop was for this group to exchange information accumulated through a variety of sensor deployments, examine failure mechanisms and explore a variety of potential solutions to these problems. One anticipated outcome was for there to be focused recommendations to funding agencies on development needs and potential solutions for 02 sensors. (pdf contains 19 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elkhorn Slough was first exposed to direct tidal forcing from the waters of Monterey Bay with the construction of Moss Landing Harbor in 1946. Elkhorn Slough is located mid-way between Santa Cruz and Monterey close to the head of Monterey Submarine Canyon. It follows a 10 km circuitous path inland from its entrance at Moss Landing Harbor. Today, Elkhorn Slough is a habitat and sanctuary for a wide variety of marine mammals, fish, and seabirds. The Slough also serves as a sink and pathway for various nutrients and pollutants. These attributes are directly or indirectly affected by its circulation and physical properties. Currents, tides and physical properties of Elkhorn Slough have been observed on an irregular basis since 1970. Based on these observations, the physical characteristics of Elkhorn Slough are examined and summarized. Elkhorn Slough is an ebb-dominated estuary and, as a result, the rise and fall of the tides is asymmetric. The fact that lower low water always follows higher high water and the tidal asymmetry produces ebb currents that are stronger than flooding currents. The presence of extensive mud flats and Salicornia marsh contribute to tidal distortion. Tidal distortion also produces several shallow water constituents including the M3, M4, and M6 overtides and the 2MK3 and MK3 compound tides. Tidal elevations and currents are approximately in quadrature; thus, the tides in Elkhorn Slough have some of the characters of a standing wave system. The temperature and salinity of lower Elkhorn Slough waters reflect, to a large extent, the influence of Monterey Bay waters, whereas the temperature and salinity of the waters of the upper Slough (>5 km from the mouth) are more sensitive to local processes. During the summer, temperature and salinity are higher in the upper slough due to local heating and evaporation. Maximum tidal currents in Elkhorn Slough have increased from approximately 75 to 120 cm/s over the past 30 years. This increase in current speed is primarily due to the change in tidal prism which has increased from approximately 2.5 to 6.2 x 106 m3 between 1956 and 1993. The increase in tidal prism is the result of both 3 rapid man-made changes to the Slough, and the continuing process of tidal erosion. Because of the increase in the tidal prism, the currents in Elkhorn Slough exhibit positive feedback, a process with uncertain consequences. [PDF contains 55 pages]