962 resultados para String trios
Resumo:
PRINCIPALS Over a million people worldwide die each year from road traffic injuries and more than 10 million sustain permanent disabilities. Many of these victims are pedestrians. The present retrospective study analyzes the severity and mortality of injuries suffered by adult pedestrians, depending on whether they used a zebra crosswalk. METHODS Our retrospective data analysis covered adult patients admitted to our emergency department (ED) between 1 January 2000 and 31 December 2012 after being hit by a vehicle while crossing the road as a pedestrian. Patients were identified by using a string term. Medical, police and ambulance records were reviewed for data extraction. RESULTS A total of 347 patients were eligible for study inclusion. Two hundred and three (203; 58.5%) patients were on a zebra crosswalk and 144 (41.5%) were not. The mean ISS (injury Severity Score) was 12.1 (SD 14.7, range 1-75). The vehicles were faster in non-zebra crosswalk accidents (47.7 km/n, versus 41.4 km/h, p<0.027). The mean ISS score was higher in patients with non-zebra crosswalk accidents; 14.4 (SD 16.5, range 1-75) versus 10.5 (SD13.14, range 1-75) (p<0.019). Zebra crosswalk accidents were associated with less risk of severe injury (OR 0.61, 95% CI 0.38-0.98, p<0.042). Accidents involving a truck were associated with increased risk of severe injury (OR 3.53, 95%CI 1.21-10.26, p<0.02). CONCLUSION Accidents on zebra crosswalks are more common than those not on zebra crosswalks. The injury severity of non-zebra crosswalk accidents is significantly higher than in patients with zebra crosswalk accidents. Accidents involving large vehicles are associated with increased risk of severe injury. Further prospective studies are needed, with detailed assessment of motor vehicle types and speed.
Resumo:
A search is conducted for non-resonant new phenomena in dielectron and dimuon final states, originating from either contact interactions or large extra spatial dimensions. The LHC 2012 proton–proton collision dataset recorded by the ATLAS detector is used, corresponding to 20 fb−1 at √ s = 8 TeV. The dilepton invariant mass spectrum is a discriminating variable in both searches, with the contact interaction search additionally utilizing the dilepton forward-backward asymmetry. No significant deviations from the Standard Model expectation are observed. Lower limits are set on the ℓℓqq contact interaction scale ʌ between 15.4 TeVand 26.3 TeV, at the 95%credibility level. For large extra spatial dimensions, lower limits are set on the string scale MS between 3.2 TeV to 5.0 TeV.
Resumo:
BACKGROUND Record linkage of existing individual health care data is an efficient way to answer important epidemiological research questions. Reuse of individual health-related data faces several problems: Either a unique personal identifier, like social security number, is not available or non-unique person identifiable information, like names, are privacy protected and cannot be accessed. A solution to protect privacy in probabilistic record linkages is to encrypt these sensitive information. Unfortunately, encrypted hash codes of two names differ completely if the plain names differ only by a single character. Therefore, standard encryption methods cannot be applied. To overcome these challenges, we developed the Privacy Preserving Probabilistic Record Linkage (P3RL) method. METHODS In this Privacy Preserving Probabilistic Record Linkage method we apply a three-party protocol, with two sites collecting individual data and an independent trusted linkage center as the third partner. Our method consists of three main steps: pre-processing, encryption and probabilistic record linkage. Data pre-processing and encryption are done at the sites by local personnel. To guarantee similar quality and format of variables and identical encryption procedure at each site, the linkage center generates semi-automated pre-processing and encryption templates. To retrieve information (i.e. data structure) for the creation of templates without ever accessing plain person identifiable information, we introduced a novel method of data masking. Sensitive string variables are encrypted using Bloom filters, which enables calculation of similarity coefficients. For date variables, we developed special encryption procedures to handle the most common date errors. The linkage center performs probabilistic record linkage with encrypted person identifiable information and plain non-sensitive variables. RESULTS In this paper we describe step by step how to link existing health-related data using encryption methods to preserve privacy of persons in the study. CONCLUSION Privacy Preserving Probabilistic Record linkage expands record linkage facilities in settings where a unique identifier is unavailable and/or regulations restrict access to the non-unique person identifiable information needed to link existing health-related data sets. Automated pre-processing and encryption fully protect sensitive information ensuring participant confidentiality. This method is suitable not just for epidemiological research but also for any setting with similar challenges.
Resumo:
Quarks were introduced 50 years ago opening the road towards our understanding of the elementary constituents of matter and their fundamental interactions. Since then, a spectacular progress has been made with important discoveries that led to the establishment of the Standard Theory that describes accurately the basic constituents of the observable matter, namely quarks and leptons, interacting with the exchange of three fundamental forces, the weak, electromagnetic and strong force. Particle physics is now entering a new era driven by the quest of understanding of the composition of our Universe such as the unobservable (dark) matter, the hierarchy of masses and forces, the unification of all fundamental interactions with gravity in a consistent quantum framework, and several other important questions. A candidate theory providing answers to many of these questions is string theory that replaces the notion of point particles by extended objects, such as closed and open strings. In this short note, I will give a brief overview of string unification, describe in particular how quarks and leptons can emerge and discuss what are possible predictions for particle physics and cosmology that could test these ideas.
Resumo:
Quarks were introduced 50 years ago opening the road towards our understanding of the elementary constituents of matter and their fundamental interactions. Since then, a spectacular progress has been made with important discoveries that led to the establishment of the Standard Theory that describes accurately the basic constituents of the observable matter, namely quarks and leptons, interacting with the exchange of three fundamental forces, the weak, electromagnetic and strong force. Particle physics is now entering a new era driven by the quest of understanding of the composition of our Universe such as the unobservable (dark) matter, the hierarchy of masses and forces, the unification of all fundamental interactions with gravity in a consistent quantum framework, and several other important questions. A candidate theory providing answers to many of these questions is string theory that replaces the notion of point particles by extended objects, such as closed and open strings. In this short note, I will give a brief overview of string unification, describe in particular how quarks and leptons can emerge and discuss what are possible predictions for particle physics and cosmology that could test these ideas.
Resumo:
In the fermion loop formulation the contributions to the partition function naturally separate into topological equivalence classes with a definite sign. This separation forms the basis for an efficient fermion simulation algorithm using a fluctuating open fermion string. It guarantees sufficient tunnelling between the topological sectors, and hence provides a solution to the fermion sign problem affecting systems with broken supersymmetry. Moreover, the algorithm shows no critical slowing down even in the massless limit and can hence handle the massless Goldstino mode emerging in the supersymmetry broken phase. In this paper – the third in a series of three – we present the details of the simulation algorithm and demonstrate its efficiency by means of a few examples.
Resumo:
PURPOSE Whole saliva comprises components of the salivary pellicle that spontaneously forms on surfaces of implants and teeth. However, there are no studies that functionally link the salivary pellicle with a possible change in gene expression. MATERIALS AND METHODS This study examined the genetic response of oral fibroblasts exposed to the salivary pellicle and whole saliva. Oral fibroblasts were seeded onto a salivary pellicle and the respective untreated surface. Oral fibroblasts were also exposed to freshly harvested sterile-filtered whole saliva. A genome-wide microarray of oral fibroblasts was performed, followed by gene ontology screening with DAVID functional annotation clustering, KEGG pathway analysis, and the STRING functional protein association network. RESULTS Exposure of oral fibroblasts to saliva caused 61 genes to be differentially expressed (P < .05). Gene ontology screening assigned the respective genes into 262 biologic processes, 3 cellular components, 13 molecular functions, and 7 pathways. Most remarkable was the enrichment in the inflammatory response. None of the genes regulated by whole saliva was significantly changed when cells were placed onto a salivary pellicle. CONCLUSION The salivary pellicle per se does not provoke a significant inflammatory response of oral fibroblasts in vitro, whereas sterile-filtered whole saliva does produce a strong inflammatory response.
Resumo:
Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8–2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W+W− pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U(1) field with very small coupling to leptons. The Drell–Yan bounds are then readily avoided because of the leptophobic nature of the massive Z′ gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau–Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Zγ topology would become a signature consistent only with a stringy origin.
Resumo:
Recent research on wordhood and morphosyntactic boundness suggests that the domains word and clitic do not lend themselves to cross-linguistic categorization but must be defined language specifically. In most languages, it is necessary to define word on two separate levels, the phonological word (p-word) and the grammatical word (g-word), and to describe mismatches between the two. This paper defines those domains for Garifuna, an Arawak language spoken in Honduras, Central America. Garifuna has auxiliary and classifier constructions which make up two p-words, and only one g-word. P-words made up of more than one g-word involve second position enclitics, word scope clitics, and proclitic connectives and prepositions. Garifuna clitics are typically unstressed, able to attach to hosts of any word class and able to string together into clusters. Enclitics are used to express tense-aspect, modality, and adverbial meanings, among others. In other languages, clitic clusters tend to display a fixed order; Garifuna clitic order seems quite free, although certain orders are preferred. Also, contrary to cross-linguistic tendencies, proclitic connectives can act as hosts for enclitic clusters, contradicting the commonly used definition of clitics as phonologically weak elements that need to attach to a host to form a p-word; such clitic-only p-words are problematic for traditional definitions of clitics.
Resumo:
With the aim of providing a worldsheet description of the refined topological string, we continue the study of a particular class of higher derivative couplings Fg,n in the type II string effective action compactified on a Calabi–Yau threefold. We analyse first order differential equations in the anti-holomorphic moduli of the theory, which relate the Fg,n to other component couplings. From the point of view of the topological theory, these equations describe the contribution of non-physical states to twisted correlation functions and encode an obstruction for interpreting the Fg,n as the free energy of the refined topological string theory. We investigate possibilities of lifting this obstruction by formulating conditions on the moduli dependence under which the differential equations simplify and take the form of generalised holomorphic anomaly equations. We further test this approach against explicit calculations in the dual heterotic theory.
Resumo:
We work out the phenomenology of a model of supersymmetry breaking in the presence of a tiny (tunable) positive cosmological constant, proposed by the authors in arXiv:1403.1534. It utilizes a single chiral multiplet with a gauged shift symmetry that can be identified with the string dilaton (or an appropriate compactification modulus). The model is coupled to the MSSM, leading to calculable soft supersymmetry breaking masses and a distinct low energy phenomenology that allows to differentiate it from other models of supersymmetry breaking and mediation mechanisms.
Resumo:
PURPOSE Advancement of the greater trochanter alters the function of the gluteus medius muscle. However, with the exception of clinical studies and biomechanical lever arm studies, no publications that analyze the consequences of advancement of the greater trochanter on the muscle function exist. The aim of the study was to analyze the mechanical changes of gluteus medius after osteotomy of the greater trochanter in a lab setting. METHODS An anatomical study of origin and insertion of the gluteus medius was carried out on four hips. Based on the dissections, a string model was developed dividing the muscle into five sectors. Changes in muscle fiber length were measured for every 10° of flexion, internal and external rotation and abduction with the trochanter in anatomic, proximalized and distalized positions. RESULTS Distalization of the trochanter leads to an imbalance of muscle action, moving the isometric sector of the muscle anteriorly with more muscle sectors being active during flexion and less during extension. Stretching of the muscle increases passive forces but decreases the force generation capacity of the muscle and at the same time increased muscle fiber excursion may require more energy consumption, which may explain earlier fatigue of the abductor musculature after distalization of the trochanter. For abduction, distalization of the muscle attachment leads to a change in contraction pattern from isometric to isotonic. Optimal balancing and excursion of the muscle is when the tip of the greater trochanter is at level with the hip rotation center. CONCLUSIONS In hips with high riding trochanter, the optimal position is at the level of the center of hip rotation. Excessive distalization should be avoided. As the conclusions and considerations are based on a lab setting, transfer to clinical practice may not necessarily apply.
Resumo:
We elaborate on a recent study of a model of supersymmetry breaking we proposed recently, in the presence of a tunable positive cosmological constant, based on a gauged shift symmetry of a string modulus, external to the Standard Model (SM) sector. Here, we identify this symmetry with a global symmetry of the SM and work out the corresponding phenomenology. A particularly attracting possibility is to use a combination of Baryon and Lepton number that contains the known matter parity and guarantees absence of dimension-four and -five operators that violate B and L.
Resumo:
The ice cover of the Arctic Ocean has been changing dramatically in the last decades and the consequences for the sea-ice associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice have been described sporadically but the frequency and distribution of their occurrence is not well quantified. We used upward looking images obtained by a remotely operated vehicle (ROV) to derive estimates of ice algal aggregate biomass and to investigate their spatial distribution. During the IceArc expedition (ARK-XXVII/3) of RV Polarstern in late summer 2012, different types of algal aggregates were observed floating underneath various ice types in the Central Arctic basins. Our results show that the floe scale distribution of algal aggregates in late summer is very patchy and determined by the topography of the ice underside, with aggregates collecting in dome shaped structures and at the edges of pressure ridges. The buoyancy of the aggregates was also evident from analysis of the aggregate size distribution. Different approaches used to estimate aggregate biomass yield a wide range of results. This highlights that special care must be taken when upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.