991 resultados para Stream processing
Resumo:
The photochemical evolution of an anthropogenic plume from the New-York/Boston region during its transport at low altitudes over the North Atlantic to the European west coast has been studied using a Lagrangian framework. This plume, originally strongly polluted, was sampled by research aircraft just off the North American east coast on 3 successive days, and 3 days downwind off the west coast of Ireland where another aircraft re-sampled a weakly polluted plume. Changes in trace gas concentrations during transport were reproduced using a photochemical trajectory model including deposition and mixing effects. Chemical and wet deposition processing dominated the evolution of all pollutants in the plume. The mean net O3 production was evaluated to be -5 ppbv/day leading to low values of O3 by the time the plume reached Europe. Wet deposition of nitric acid was responsible for an 80% reduction in this O3 production. If the plume had not encountered precipitation, it would have reached the Europe with O3 levels up to 80-90 ppbv, and CO levels between 120 and 140 ppbv. Photochemical destruction also played a more important role than mixing in the evolution of plume CO due to high levels of both O3 and water vapour showing that CO cannot always be used as a tracer for polluted air masses, especially for plumes transported at low altitudes. The results also show that, in this case, an important increase in the O3/CO slope can be attributed to chemical destruction of CO and not to photochemical O3 production as is often assumed.
Resumo:
We construct a mapping from complex recursive linguistic data structures to spherical wave functions using Smolensky's filler/role bindings and tensor product representations. Syntactic language processing is then described by the transient evolution of these spherical patterns whose amplitudes are governed by nonlinear order parameter equations. Implications of the model in terms of brain wave dynamics are indicated.
Resumo:
The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.
Resumo:
Mega-scale glacial lineations (MSGLs) are longitudinally aligned corrugations (ridge-groove structures 6-100 km long) in sediment produced subglacially. They are indicators of fast flow and a common signature of ice-stream beds. We develop a qualitative theory that accounts for their formation, and use numerical modelling, and observations of ice-stream beds to provide supporting evidence. Ice in contact with a rough (scale of 10-10(3) m) bedrock surface will mimic the form of the bed. Because of flow acceleration and convergence in ice-stream onset zones, the ice-base roughness elements experience transverse strain, transforming them from irregular bumps into longitudinally aligned keels of ice protruding downwards. Where such keels slide across a soft sedimentary bed, they plough through the sediments, carving elongate grooves, and deforming material up into intervening ridges. This explains MSGLs and has important implications for ice-stream mechanics. Groove ploughing provides the means to acquire new lubricating sediment and to transport large volumes of it downstream. Keels may provide basal drag in the force budget of ice streams, thereby playing a role in flow regulation and stability We speculate that groove ploughing permits significant ice-stream widening, thus facilitating high-magnitude ice discharge.
Resumo:
In this paper, a review is undertaken of the major models currently in use for describing water quality in freshwater river systems. The number of existing models is large because the various studies of water quality in rivers around the world have often resulted in the construction of new 'bespoke' models designed for the particular situation of that study. However, it is worth considering models that are already available, since an existing model, suitable for the purposes of the study, will save a great deal of work and may already have been established within regulatory and legal frameworks. The models chosen here are SIMCAT, TOMCAT, QUAL2E, QUASAR, MIKE-11 and ISIS, and the potential for each model is examined in relation to the issue of simulating dissolved oxygen (DO) in lowland rivers. These models have been developed for particular purposes and this review shows that no one model can provide all of the functionality required. Furthermore, all of the models contain assumptions and limitations that need to be understood if meaningful interpretations of the model simulations are to. be made. The work is concluded with the view that it is unfair to set one model against another in terms of broad applicability, but that a model of intermediate complexity, such as QUASAR, is generally well suited to simulate DO in river systems. (C) 2003 Elsevier Science B.V. All rights reserved.