992 resultados para Storage temperature
Resumo:
NORTH SEA STUDY OCCASIONAL PAPER No. 112
Resumo:
We investigate the causes of a conflict by adding ambient climate factors to the existing bundle of most significant variables. It turns out that – controlling for possible associations – temperature could actually induce a conflict. We emphasise that temperature could not be a dominant reason in starting a conflict; however, it could escalate the chances when other factors are present. This paper references some of the related psychological studies to support this claim. We also show that grievance factors could actually be rightfully effective in starting an internal conflict alongside greed based reasons. In the end, we believe that it could be informative to study ambient factors more often in economics.
Resumo:
To note the effect of temperature on survival, growth and fecundity, newly hatched (zero day old) snails Indoplanorbis exustus were cultured at 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees and 35 degreescentigrades constant temperatures and room temperature (17.5 degrees - 32.5 degrees centigrades). Individuals exposed to 10 degrees centigrades died within 3 days while those reared at 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees centigrades and room temperature survived for a period of 6, 27, 18, 16, 12 and 17 weeks respectively. An individual added on an average 0.21 mm and 0.45 mg, 0.35 mm and 7.94 mg, 0.63 mm and 15.5 mg, 0.81 mm and 27.18 mg, 1.07 mm and 41.48 mg and 0.78 mm and 31.2 mg to the shell diameter and body weight respectively at those temperatures per week. The snails cultured at 15 degrees centigrades died prior to attainment of sexual maturity. On an average, an individual produced 31.9 and 582.77, 54.86 and 902.18, 56.01 and 968.45, 49.32 and 798.68 and 62.34 and 1143.97 capsules and eggs respectively at 20 degrees, 25 degrees, 30 degrees, 35 degrees centigrades and room temperature (17.5 degrees - 32.5 degrees centigrades).
Resumo:
Different blood consumption speed was observed in Triatoma infestans - nymphs and adults - exposed to 12 degrees C and 28 degrees C. Exposure to optimal temperature (28 degrees C) allows the insects to consume blood at a rate of 9% per day. Significative relationship between blood amount present in the promesenteron and consumed blood was found at 28 degrees. Consumption of blood was drastically reduced at the lowest temperature. Accordingly, lack of ovaric development, oviposition and mating behaviour was observed in insects kept at 12 degrees C. Relationship between laboratory and field observations are discussed.
Resumo:
The effect of temperature (20 degrees-35 degrees C) on different stages of Romanomermis iyengari was studied. In embryonic development, the single-cell stage eggs developed into mature eggs in 4.5-6.5 days at 25-35 degrees C but, required 9.5 days at 20 degrees C. Complete hatching occurred in 7 and 9 days after egg-laying at 35 and 30 degrees C, respectively. At 25 and 20 degrees C, 85-96 of the eggs did not hatch even by 30th day. Loss of infectivity and death of the preparasites occurred faster at higher temperatures. The 50 survival durations of preparasites at 20 and 35 degrees C were 105.8 and 10.6 hr respectively. They retained 50 infectivity up to 69.7 and 30.3 hr. The duration of the parasitic phase increased as temperature decreased. Low temperature favoured production of a higher proportion of females which were also larger in size. The maximum time taken for the juveniles to become adults was 14 days at 20 degrees C and the minimum was 9 days at 35 degrees C. Oviposition began earlier at higher temperature than at lower temperature. However, its fecundic period was shorter at 20 degrees C than at 35 degrees C indicating enhanced rate of oviposition at 20 degrees C. Fecundity was adversely affected at 20 degrees C and 35 degrees C. It is shown that the temperature range of 25 degrees-30 degrees C favours optimum development of R. iyengari.
Resumo:
The sensitivity of altitudinal and latitudinal tree-line ecotones to climate change, particularly that of temperature, has received much attention. To improve our understanding of the factors affecting tree-line position, we used the spatially explicit dynamic forest model TreeMig. Although well-suited because of its landscape dynamics functions, TreeMig features a parabolic temperature growth response curve, which has recently been questioned. and the species parameters are not specifically calibrated for cold temperatures. Our main goals were to improve the theoretical basis of the temperature growth response curve in the model and develop a method for deriving that curve's parameters from tree-ring data. We replaced the parabola with an asymptotic curve, calibrated for the main species at the subalpine (Swiss Alps: Pinus cembra, Larix decidua, Picea abies) and boreal (Fennoscandia: Pinus sylvestris, Betula pubescens, P. abies) tree-lines. After fitting new parameters, the growth curve matched observed tree-ring widths better. For the subalpine species, the minimum degree-day sum allowing, growth (kDDMin) was lowered by around 100 degree-days; in the case of Larix, the maximum potential ring-width was increased to 5.19 mm. At the boreal tree-line, the kDDMin for P. sylvestris was lowered by 210 degree-days and its maximum ring-width increased to 2.943 mm; for Betula (new in the model) kDDMin was set to 325 degree-days and the maximum ring-width to 2.51 mm; the values from the only boreal sample site for Picea were similar to the subalpine ones, so the same parameters were used. However, adjusting the growth response alone did not improve the model's output concerning species' distributions and their relative importance at tree-line. Minimum winter temperature (MinWiT, mean of the coldest winter month), which controls seedling establishment in TreeMig, proved more important for determining distribution. Picea, P. sylvestris and Betula did not previously have minimum winter temperature limits, so these values were set to the 95th percentile of each species' coldest MinWiT site (respectively -7, -11, -13). In a case study for the Alps, the original and newly calibrated versions of TreeMig were compared with biomass data from the National Forest Inventor), (NFI). Both models gave similar, reasonably realistic results. In conclusion, this method of deriving temperature responses from tree-rings works well. However, regeneration and its underlying factors seem more important for controlling species' distributions than previously thought. More research on regeneration ecology, especially at the upper limit of forests. is needed to improve predictions of tree-line responses to climate change further.
Resumo:
BACKGROUND: Ethanol can account for up to 10 percent of the energy intake of persons who consume moderate amounts of ethanol. Its effect on energy metabolism, however, is not known. METHODS: We studied the effect of ethanol on 24-hour substrate-oxidation rates in eight normal men during two 48-hour sessions in an indirect-calorimetry chamber. In each session, the first 24 hours served as the control period. On the second day of one session, an additional 25 percent of the total energy requirement was added as ethanol (mean [+/- SD], 96 +/- 4 g per day); during the other session, 25 percent of the total energy requirement was replaced by ethanol, which was isocalorically substituted for lipids and carbohydrates. RESULTS: Both the addition of ethanol and the isocaloric substitution of ethanol for other foods reduced 24-hour lipid oxidation. The respective mean (+/- SE) decreases were 49.4 +/- 6.7 and 44.1 +/- 9.3 g per day (i.e., reductions of 36 +/- 3 percent and 31 +/- 7 percent from the oxidation rate during the control day; P less than 0.001 and P less than 0.0025). This effect occurred only during the daytime period (8:30 a.m. to 11:30 p.m.), when ethanol was consumed and metabolized. Neither the addition of ethanol to the diet nor the isocaloric substitution of ethanol for other foods significantly altered the oxidation of carbohydrate or protein. Both regimens including ethanol produced an increase in 24-hour energy expenditure (7 +/- 1 percent with the addition of ethanol, P less than 0.001; 4 +/- 1 percent with the substitution of ethanol for other energy sources, P less than 0.025). CONCLUSIONS: Ethanol, either added to the diet or substituted for other foods, increases 24-hour energy expenditure and decreases lipid oxidation. Habitual consumption of ethanol in excess of energy needs probably favors lipid storage and weight gain.
Resumo:
Chrysomya albiceps specimens were obtained from colonies established with larvae and adults collected at the Federal Rural University in Rio de Janeiro, Seropédica, State of Rio de Janeiro. The larval stage of C. albiceps was allowed to develop in climatic chambers at temperatures of 18, 22, 27 and 32ºC, and the pupal stage was allowed to develop at 22, 27 and 32ºC (60 ± 10% RH and 14 hr photoperiod). The duration and viability of the larval stage of C. albiceps at 18, 22, 27 and 32ºC were 21.30, 10.61, 5.0 and 4.0 days and 76.5, 88.5, 98.5 and 99.5%, respectively, with mean mature larval weights of 45.16, 81.86, 84.35 and 70.53 mg, respectively. Mean duration and viability of the pupal stage at 22, 27 and 32ºC were 9.36, 4.7 and 3.0 days and 93.8, 100 and 100%, respectively. The basal temperature for the larval and pupal stage and for the larval and adult phase were 15.04, 17.39 and 15.38ºC, corresponding to 65.67, 44.15 and 114.23 DD.
Resumo:
One of the main problems in combating tuberculosis is caused by a poor penetration of drugs into the mycobacterial cells. A prodrug approach via activation inside mycobacterial cells is a possible strategy to overcome this hurdle and achieve efficient drug uptake. Esters are attractive candidates for such a strategy and we and others communicated previously the activity of esters of weak organic acids against mycobacteria. However very little is known about ester hydrolysis by mycobacteria and no biological model is available to study the activation of prodrugs by these microorganisms. To begin filling this gap, we have embarked in a project to develop an in vitro method to study prodrug activation by mycobacteria using Mycobacterium smegmatis homogenates. Model ester substrates were ethyl nicotinate and ethyl benzoate whose hydrolysis was monitored and characterized kinetically. Our studies showed that in M. smegmatis most esterase activity is associated with the soluble fraction (cytosol) and is preserved by storage at 5°C or at room temperature for one hour, or by storage at -80°C up to one year. In the range of homogenate concentrations studied (5-80% in buffer), k(obs) varied linearly with homogenate concentration for both substrates. We also found that the homogenates showed Michaelis-Menten kinetics behavior with both prodrugs. Since ethyl benzoate is a good substrate for the mycobacterial esterases, this compound can be used to standardize the esterasic activity of homogenates, allowing results of incubations of prodrugs with homogenates from different batches to be readily compared.
Resumo:
Eosinophils are prominent inflammatory cells in asthma and other allergic disorders, as well as in helminthic parasite infections. Recently, eosinophils have been reported to synthesize and store a range of regulatory proteins within their secretory granules (eokines). Eokines comprise a group of cytokines, chemokines, and growth factors which are elaborated by eosinophils. These proteins, and the messages which encode them, appear to be identical to those produced by lymphocytes and other tissues. Interestingly, immunoreactivity to many of these eokines has been found to co-localize to the eosinophil´s secretory granules. In this review, we have discussed the repertoire of 18 eokines so far identified in eosinophils, and focused on four of these, namely, interleukin-2 (IL-2), IL-4, granulocyte/macrophage colony-stimulating factor (GM-CSF), and RANTES. These four eokines co-localize to the crystalloid granules in eosinophils, as shown in studies using subcellular fractionation and immunogold labeling in electron microscopy. During stimulation by physiological triggers, for example, with serum-coated particles, eosinophils release these mediators into the surrounding supernatant. In addition, eokines are likely to be synthesized within eosinophils rather than taken up by endocytosis, as show in detection of mRNA for each of these proteins using in situ hybridization, RT-PCR, and in the case of RANTES, in situ RT-PCR. Eokines synthesis and release from eosinophils challenges the commonly held notion that these cells act downstream of key elements in immune system, and indicate that they may instead belong to the afferent arm of immunity.
Resumo:
There has been a long debate since the introduction of blood analysis prior to major sports events, to find out whether blood samples should be analysed right away on the site of competition or whether they should be transported and analysed in an anti-doping laboratory. Therefore, it was necessary to measure blood samples and compare the results obtained right after the blood withdrawal with those obtained after a few hours delay. Furthermore, it was interesting to determine the effect of temperature on the possible deterioration of red blood cell analytes used for testing recombinant erythropoietin abuse. Healthy volunteers were asked to give two blood samples and one of these was kept at room temperature whereas the second one was put into a refrigerator. On a regular basis, the samples were rolled for homogenisation and temperature stabilisation and were analysed with the same haematological apparatus. The results confirmed that blood controls prior to competition should be performed as soon as possible with standardised pre-analytical conditions to avoid too many variations notably on the haematocrit and the reticulocyte count. These recommendations should ideally also be applied to the all the blood controls compulsory for the medical follow up, otherwise unexplainable values could be misinterpreted and could for instance lead to a period of incapacity.
Resumo:
Cold acclimatization (4-5°C) is accompanied by 2-3 fold increase of brown adipose tissue (BAT). This rapid growth of interscapular BAT was studied after histamine depletion. In control rats maintained at room temperature (28 ± 2°C) the BAT histamine content was 23.4 ± 5.9 (mean ± SD) µg/g of tissue and cold acclimatization (5±1°C) produced a significant increase of BAT weight, but reduced the histamine content to 8.4 ± 1.9 µg/g. The total weight of BAT after 20 days of acclimatization was unaffected by depletion of histamine due to compound 48/80. The low level of histamine in BAT of cold acclimatized rats could be due to a fast rate of amine utilization; alternatively an altered synthesis or storage process may occur during acclimatization.
Resumo:
ß-lactamase activity was studied in Neisseria gonorrhoeae strains. Optimum temperature was found to be 37°C. The enzyme was inactivated at temperatures higher than 60°C, but remained active during storage at low temperatures (4°C, -30°C and -70°C) for two months. Enzyme activity was observed within a pH range of 5.8-8.0, while the optimum pH was 7.0-7.2. Addition of Ni2+, Fe2+, Fe3+, Mn2+ and p-chloromercurybenzoate to the reaction buffer exerted a negative effect upon the activity, whereas Hg2+ and ethylene diamine tetra-acetic acid produced complete inhibition. These results would indicate the presence of -SH groups at the catalytic site of the enzyme.