945 resultados para Stochastic quantization
Resumo:
Background: Population antimicrobial use may influence resistance emergence. Resistance is an ecological phenomenon due to potential transmissibility. We investigated spatial and temporal patterns of ciprofloxacin (CIP) population consumption related to E. coli resistance emergence and dissemination in a major Brazilian city. A total of 4,372 urinary tract infection E. coli cases, with 723 CIP resistant, were identified in 2002 from two outpatient centres. Cases were address geocoded in a digital map. Raw CIP consumption data was transformed into usage density in DDDs by CIP selling points influence zones determination. A stochastic model coupled with a Geographical Information System was applied for relating resistance and usage density and for detecting city areas of high/low resistance risk. Results: E. coli CIP resistant cluster emergence was detected and significantly related to usage density at a level of 5 to 9 CIP DDDs. There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. Conclusions: There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. The usage density of 5-9 CIP DDDs per 1,000 inhabitants within the same influence zone was the resistance triggering level. This level led to E. coli resistance clustering, proving that individual resistance emergence and dissemination was affected by antimicrobial population consumption.
Resumo:
Large-conductance Ca(2+)-activated K(+) channels (BK) play a fundamental role in modulating membrane potential in many cell types. The gating of BK channels and its modulation by Ca(2+) and voltage has been the subject of intensive research over almost three decades, yielding several of the most complicated kinetic mechanisms ever proposed. A large number of open and closed states disposed, respectively, in two planes, named tiers, characterize these mechanisms. Transitions between states in the same plane are cooperative and modulated by Ca(2+). Transitions across planes are highly concerted and voltage-dependent. Here we reexamine the validity of the two-tiered hypothesis by restricting attention to the modulation by Ca(2+). Large single channel data sets at five Ca(2+) concentrations were simultaneously analyzed from a Bayesian perspective by using hidden Markov models and Markov-chain Monte Carlo stochastic integration techniques. Our results support a dramatic reduction in model complexity, favoring a simple mechanism derived from the Monod-Wyman-Changeux allosteric model for homotetramers, able to explain the Ca(2+) modulation of the gating process. This model differs from the standard Monod-Wyman-Changeux scheme in that one distinguishes when two Ca(2+) ions are bound to adjacent or diagonal subunits of the tetramer.
Resumo:
Context. The subject of asteroids in cometary orbits (ACOs) has been of growing interest lately. These objects have the orbital characteristics typical of comets, but are asteroidal in appearance, i.e., show no signs of a coma at any part of their orbits. At least a fraction of these objects are thought to be comets that have either exhausted all their volatile content or developed a refractory crust that prevents sublimation. In particular, the asteroid ( 5201) Ferraz-Mello has, since its discovery, been suspected to be an extinct Jupiter family comet due to the peculiar nature of its orbit. Aims. The aim of this work is to put constraints on the possible origin of ( 5201) Ferraz-Mello by means of spectroscopic characterization and a study of the dynamics of this asteroid. Methods. We used the SOAR Optical Imager (SOI) to obtain observations of ( 5201) Ferraz-Mello using four SDSS filters. These observations were compared to asteroids listed in the Sloan Moving objects catalog and also to photometry of cometary nuclei, Centaurs, and TNOs. The orbital evolution of ( 5201) Ferraz-Mello and of a sample of asteroids and comets that are close to that object in the a - e plane were simulated using a pure N-body code for 4 000 years forward and 4 000 years backward in time. Results. The reflectance spectrum obtained from its colors in the SDSS system is unusual, with a steep spectral gradient that is comparable to TNOs and Centaurs, but with an increase in the reflectance in the g band that is not common in those populations. A similar behavior is seen in cometary nuclei that were observed in the presence of a faint dust coma. The dynamical results confirm the very chaotic evolution found previously and its dynamical similarity to the chaotic evolution of some comets. The asteroid is situated in the very stochastic layer at the border of the 2/1 resonance, and it has a very short Lyapunov time ( 30 - 40) years. Together, the spectral characteristcs and the dynamical evolution suggest that ( 5201) Ferraz-Mello is a dormant or extinct comet.
Resumo:
Background: Polymorphisms of the mannose-binding lectin gene (MBL2) affect the concentration and functional efficiency of the protein. We recently used haplotype-specific sequencing to identify 23 MBL2 haplotypes, associated with enhanced susceptibility to several diseases. Results: In this work, we applied the same method in 288 and 470 chromosomes from Gabonese and European adults, respectively, and found three new haplotypes in the last group. We propose a phylogenetic nomenclature to standardize MBL2 studies and found two major phylogenetic branches due to six strongly linked polymorphisms associated with high MBL production. They presented high Fst values and were imbedded in regions with high nucleotide diversity and significant Tajima's D values. Compared to others using small sample sizes and unphased genotypic data, we found differences in haplotyping, frequency estimation, Fu and Li's D* and Fst results. Conclusion: Using extensive testing for selective neutrality, we confirmed that stochastic evolutionary factors have had a major role in shaping this polymorphic gene worldwide.
Resumo:
It is well known that resonance can be induced by external noise or diversity. Here we show that resonance can be induced even by a phase disorder in coupled excitable neurons with subthreshold activity. In contrast to the case of identical phase, we find that phase disorder plays an active role in enhancing neuronal activity. We also uncover that the presence of phase disorder can induce a double resonance phenomenon: phase disorder and coupling strength both can enhance neuronal firing activity. A physical theory is formulated to help understand the mechanism behind this double resonance phenomenon.
Resumo:
In many real situations, randomness is considered to be uncertainty or even confusion which impedes human beings from making a correct decision. Here we study the combined role of randomness and determinism in particle dynamics for complex network community detection. In the proposed model, particles walk in the network and compete with each other in such a way that each of them tries to possess as many nodes as possible. Moreover, we introduce a rule to adjust the level of randomness of particle walking in the network, and we have found that a portion of randomness can largely improve the community detection rate. Computer simulations show that the model has good community detection performance and at the same time presents low computational complexity. (C) 2008 American Institute of Physics.
Resumo:
The existence of a reversed magnetic shear in tokamaks improves the plasma confinement through the formation of internal transport barriers that reduce radial particle and heat transport. However, the transport poloidal profile is much influenced by the presence of chaotic magnetic field lines at the plasma edge caused by external perturbations. Contrary to many expectations, it has been observed that such a chaotic region does not uniformize heat and particle deposition on the inner tokamak wall. The deposition is characterized instead by structured patterns called magnetic footprints, here investigated for a nonmonotonic analytical plasma equilibrium perturbed by an ergodic limiter. The magnetic footprints appear due to the underlying mathematical skeleton of chaotic magnetic field lines determined by the manifold tangles. For the investigated edge safety factor ranges, these effects on the wall are associated with the field line stickiness and escape channels due to internal island chains near the flux surfaces. Comparisons between magnetic footprints and escape basins from different equilibrium and ergodic limiter characteristic parameters show that highly concentrated magnetic footprints can be avoided by properly choosing these parameters. (c) 2008 American Institute of Physics.
Resumo:
Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional (2D) defocusing nonlinear Schroumldinger (NLS) equation. This problem is of fundamental importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear ""ship-wave"" pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles.
Resumo:
By means of numerical simulations and epidemic analysis, the transition point of the stochastic asynchronous susceptible-infected-recovered model on a square lattice is found to be c(0)=0.176 500 5(10), where c is the probability a chosen infected site spontaneously recovers rather than tries to infect one neighbor. This point corresponds to an infection/recovery rate of lambda(c)=(1-c(0))/c(0)=4.665 71(3) and a net transmissibility of (1-c(0))/(1+3c(0))=0.538 410(2), which falls between the rigorous bounds of the site and bond thresholds. The critical behavior of the model is consistent with the two-dimensional percolation universality class, but local growth probabilities differ from those of dynamic percolation cluster growth, as is demonstrated explicitly.
Resumo:
We analyze the irreversibility and the entropy production in nonequilibrium interacting particle systems described by a Fokker-Planck equation by the use of a suitable master equation representation. The irreversible character is provided either by nonconservative forces or by the contact with heat baths at distinct temperatures. The expression for the entropy production is deduced from a general definition, which is related to the probability of a trajectory in phase space and its time reversal, that makes no reference a priori to the dissipated power. Our formalism is applied to calculate the heat conductance in a simple system consisting of two Brownian particles each one in contact to a heat reservoir. We show also the connection between the definition of entropy production rate and the Jarzynski equality.
Resumo:
Noise is an intrinsic feature of population dynamics and plays a crucial role in oscillations called phase-forgetting quasicycles by converting damped into sustained oscillations. This function of noise becomes evident when considering Langevin equations whose deterministic part yields only damped oscillations. We formulate here a consistent and systematic approach to population dynamics, leading to a Fokker-Planck equation and the associate Langevin equations in accordance with this conceptual framework, founded on stochastic lattice-gas models that describe spatially structured predator-prey systems. Langevin equations in the population densities and predator-prey pair density are derived in two stages. First, a birth-and-death stochastic process in the space of prey and predator numbers and predator-prey pair number is obtained by a contraction method that reduces the degrees of freedom. Second, a van Kampen expansion in the inverse of system size is then performed to get the Fokker-Planck equation. We also study the time correlation function, the asymptotic behavior of which is used to characterize the transition from the cyclic coexistence of species to the ordinary coexistence.
Resumo:
Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.
Resumo:
We study a stochastic lattice model describing the dynamics of coexistence of two interacting biological species. The model comprehends the local processes of birth, death, and diffusion of individuals of each species and is grounded on interaction of the predator-prey type. The species coexistence can be of two types: With self-sustained coupled time oscillations of population densities and without oscillations. We perform numerical simulations of the model on a square lattice and analyze the temporal behavior of each species by computing the time correlation functions as well as the spectral densities. This analysis provides an appropriate characterization of the different types of coexistence. It is also used to examine linked population cycles in nature and in experiment.
Resumo:
We present the transition amplitude for a particle moving in a space with two times and D space dimensions having an Sp(2, R) local symmetry and an SO(D, 2) rigid symmetry. It was obtained from the BRST-BFV quantization with a unique gauge choice. We show that by constraining the initial and final points of this amplitude to lie on some hypersurface of the D + 2 space the resulting amplitude reproduces well-known systems in lower dimensions. This work provides an alternative way to derive the effects of two-time physics where all the results come from a single transition amplitude.
Resumo:
Using the Berezin-Marinov pseudoclassical formulation of the spin particle we propose a classical model of spin noncommutativity. In the nonrelativistic case, the Poisson brackets between the coordinates are proportional to the spin angular momentum. The quantization of the model leads to the noncommutativity with mixed spatial and spin degrees of freedom. A modified Pauli equation, describing a spin half particle in an external electromagnetic field is obtained. We show that nonlocality caused by the spin noncommutativity depends on the spin of the particle; for spin zero, nonlocality does not appear, for spin half, Delta x Delta y >= theta(2)/2, etc. In the relativistic case the noncommutative Dirac equation was derived. For that we introduce a new star product. The advantage of our model is that in spite of the presence of noncommutativity and nonlocality, it is Lorentz invariant. Also, in the quasiclassical approximation it gives noncommutativity with a nilpotent parameter.