980 resultados para Stable Isotope Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine transgression Into the Baltic Sea through the Great Belt took place around 9,370 calibrated C-14-years B.P. The sedimentary sequence from the early brackish phase and the change to marine conditions has been investigated in detail through C-14-datings, and oxygen and carbon isotope measurements, and is interpreted by comparison with modern analogs. The oldest brackish sediments are the strongly laminated clays and silts rich in organic carbon followed by non-laminated heavily bioturbated silts. The bedding and textural characteristics and stable isotope analyses on Ammonia beccarii (dextral) and A. beccarii (sinistral) show that the deposltlonal conditions respond to a change at about 9,100 cal. a B.P. from an unstratified brackish water environment in the initial stage of the Littorina Transgression to a thermohaline layered milieu in the upper unit. The oxygen isotope results indicate that the bottom waters of this latter period had salinities and temperatures comparable to the present day Kiel Bay waters. The isotopic composition of the total organic carbon and the d13C-values of A. beccarii reveal a gradual change from an initially lacustrine/terrestrial provenance toward a brackish/marine dominated depositional environment. A stagnation of the sea level at around 9,100 to 9,400 B.P. is indicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent efforts to link the isotopic composition of snow in Greenland with meteorological and climatic parameters have indicated that relatively local information such as observed annual temperatures from coastal Greenland sites, as well as more synoptic scale features such as the North Atlantic Oscillation (NAO) and the temperature seesaw between Jakobshaven, Greenland, and Oslo, Norway, are significantly correlated with d18O and dD values from the past few hundred years measured in ice cores. In this study we review those efforts and then use a new record of isotope values from the Greenland Ice Sheet Project 2 and Greenland Ice Core Project sites at Summit, Greenland, to compare with meteorological and climatic parameters. This new record consists of six individual annually resolved isotopic records which have been average to produce a Summit stacked isotope record. The stacked record is significantly correlated with local Greenland temperatures over the past century (r=0.471), as well as a number of other records including temperatures and pressures from specific locations as well as temperature and pressure patterns such as the temperature seesaw and the North Atlantic Oscillation. A multiple linear regression of the stacked isotope record with a number of meteorological and climatic parameters in the North Atlantic region reveals that five variables contribute significantly to the variance in the isotope record: winter NAO, solar irradiance (as recorded by sunspot numbers), average Greenland coastal temperature, sea surface temperature in the moisture source region for Summit (30°-20°N), and the annual temperature seesaw between Jakobshaven and Oslo. Combined, these variables yield a correlation coefficient of r=0.71, explaining half of the variance in the stacked isotope record.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 129 recovered chert, porcellanite, and radiolarite from Middle Jurassic to lower Miocene strata from the western Pacific that formed by different processes and within distinct host rocks. These cherts and porcellanites formed by (1) replacement of chalk or limestone, (2) silicification and in-situ silica phase-transformation of bedded clay-bearing biosiliceous deposits, (3) high-temperature silicification adjacent to volcanic flows or sills, and (4) silica phase-transformation of mixed biosiliceous-volcaniclastic sediments. Petrologic and O-isotopic studies highlight the key importance of permeability and time in controlling the formation of dense cherts and porcellanites. The formation of dense, vitreous cherts apparently requires the local addition and concentration of silica. The influence of permeability is shown by two examples, in which: (1) fragments of originally identical radiolarite that were differentially isolated from pore-water circulation by cement-filled fractures were silicified to different degrees, and (2) by the development of secondary porosity during the opal-CT to quartz inversion within conditions of negligible permeability. The importance of time is shown by the presence of quartz chert below, but not above, a Paleogene hiatus at Site 802, indicating that between 30 and 52 m.y. was required for the formation of quartz chert within calcareous-siliceous sediments. The oxygen-isotopic composition for all Leg 129 carbonate- and Fe/Mn-oxide-free whole-rock samples of chert and porcellanite range widely from d18O = 27.8 per mil to 39.8 per mil vs. V-SMOW. Opal-CT samples are consistently richer in 18O (34.1 per mil to 39.3 per mil) than quartz subsamples (27.8 per mil to 35.7 per mil). Using the O-isotopic fractionation expression for quartz-water of Knauth and Epstein (1976) and assuming d18Opore water = -1.0 per mil, model temperatures of formation are 7°-26°C for carbonate-replacement quartz cherts, 22°-25°C for bedded quartz cherts, and 32°-34°C for thermal quartz cherts. Large variations in O-isotopic composition exist at the same burial depth between co-existing silica phases in the same sample and within the same phase in adjacent lithologies. For example, quartz has a wide range of isotopic compositions within a single breccia sample; d18O = 33.4 per mil and 28.0 per mil for early and late stages of fracture-filling cementation, and 31.6 per mil and 30.2 per mil for microcrystalline quartz precipitation within enclosed chert and radiolarite fragments. Similarly, opal-CT d101 spacing varies across lithologic or diagenetic boundaries within single samples. Co-occurring opal-CT and chalcedonic quartz in shallowly buried chert and porcellanite from Sites 800 and 801 have an 8.7 per mil difference in d18O, suggesting that pore waters in the Pigafetta Basin underwent a Tertiary shift to strongly 18O-depleted values due to alteration of underlying Aptian to Albian-Cenomanian volcaniclastic deposits after opal-CT precipitation, but prior to precipitation of microfossil-filling chalcedony.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An early Holocene record from the Gulf of Mexico (GOM) reveals climatic and hydrologic changes during the interval from 10.5 to 7 thousand calendar years before present from paired analyses of Mg/Ca and d18O on foraminiferal calcite. The sea surface temperature record based on foraminiferal Mg/Ca contains six oscillations and an overall ~1.5°C warming that appears to be similar to the September-March insolation difference. The d18O of seawater in the GOM (d18OGOM) record contains six oscillations, including a -0.8 per mil excursion that may be associated with the "8.2 ka climate event" or a broader climate anomaly. Faunal census records from three GOM cores exhibit similar changes, suggesting subcentennial-scale variability in the incursions of Caribbean waters into the GOM. Overall, our results provide evidence that the subtropics were characterized by decadal- to centennial-scale climatic and hydrologic variability during the early Holocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotope records of coexisting benthic foraminifers Uvigerina spp. and Cibicidoides spp. and planktonic G. ruber (white variety) from Site 724 are used to study the late Pleistocene evolution of surface and intermediate water hydrography (593 m water depth) at the Oman Margin. Glacial-interglacial d18O amplitudes recorded by the benthic foraminifers are reduced when compared to the estimated mean ocean changes of d18Oseawater . Epibenthic d13C remains at its modern level or is increased during glacial times. This implies that Red Sea outflow waters which are enriched in d18Oseawater and d13C (Sum CO2) have been replaced during glacial periods by intermediate waters still positive in d13C (Sum CO2) but more negative in d18Oseawater. Glacial-interglacial amplitudes of the planktonic d18O record exceed those of the mean ocean d18Oseawater variation and imply decreased surface water temperatures (SST) during glacial times. Throughout most of the records these cooling events correlate with enhanced rates of carbon accumulation. However, both negative (colder) SST and positive Corg accumulation rate anomalies do not correlate with potential physical upwelling maxima as inferred from the orbital monsoon index. This is in conflict with the established hypothesis that upwelling in the estern Arabia Sea should be strongest during maxima of the southwest monsoon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface and deep water circulation patterns in the eastern Indian Ocean during the Paleocene Epoch are inferred based on an integrated magnetobiostratigraphic and stable isotope investigation of Ocean Drilling Program Hole 761B, drilled on the Wombat Plateau. A combination of magnetostratigraphy, biostratigraphy and isotope stratigraphy demonstrates that numerous deep sea sites that have been considered to show continuous, or nearly continuous sedimentation through the Paleocene are punctuated by a series of hiatuses, some of which exceeding a duration of 1 Myr. Therefore, our study is based on a detailed temporal interpretation of the stratigraphic successions we used for paleoceanographic reconstructions. We compare detailed planktonic and benthic foraminiferal carbon and oxygen isotope records from Hole 761B with several temporally correlative records published from different oceanic provinces in order to distinguish between local and global patterns within the eastern Indian Ocean. Although Site 761 was situated at low latitudes during the Paleocene, its surface waters were predominantly influenced by circulation originating from the Southern Ocean as indicated by inferred cool sea surface temperatures and reduced surface to deep water temperature gradients. We suggest that deep waters in the eastern Indian Ocean were not directly fed by the Southern or Tethys Oceans. Rather, the more negative delta13C composition of the bottom waters recorded by benthic foraminifera implies the presence and/or active contribution of aged deep waters from the Pacific during this time, at least prior to ~60.2 Ma and subsequent to ~59.0 Ma. The Indian continent, Ninetyeast Ridge, Kerguelen Plateau and Broken Ridge may have played a significant role as submarine barriers to deep water circulation during the Paleocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotopic values on planktonic foraminifera in a suite of cores from basins across the SE Baffin Shelf are used to extract a record of meltwater events during Termination I deglaciation. Resolution and Hatton basins lie on the SE Baffin Shelf at water depths > 500 m, seaward of major conduits for ice drainage from the eastern sector of the Laurentide Ice Sheet (LIS). Accelerator mass spectrometry 14C dates are used to constrain our chronology of events in ten cores. In Resolution Basin, three cores have 14C AMS dates on foraminifera of > 20 ka at their bases; whereas Hatton Basin cores terminate in sediments < 13 kyr. Sedimentation rates varied between 0.1 to 4.5 m/ka. Stable oxygen and carbon isotopic ratios were obtained on 146 samples of the planktonic foraminifera Neogloboquadrina pachyderma (Ehrenberg) sinistral, from seven of the ten cores. No evidence was found to indicate that test morphology or size affected delta18O. Between 7 and 13.5 ka the surface water on the shelf was on average 1 per mil lower than the open ocean signal. Significant temporal variations were found in both delta18O and delta13C. Evidence for significant low delta18O events occurred between 13 and 8 ka. The delta13C record from the planktonic foraminifera suggests a threefold division of events between 13 and 7 ka, with positive values between 10.8 and 13.0 ka, negative values between 9 and 10.8 ka, and positive values from 7 to 9 ka. The delta18O data suggest the presence of meltwater on the shelf some 3,000 years prior to the first late glacial dates on terrestrial deglaciation (at circa 10.4 ka). "Hudson Strait must be the real key to the importance of the calving process during deglaciation, because it is potentially the largest marine outlet for the Laurentide Ice Sheet and because it leads into the very center of the ice sheet.....the rates of calving through Hudson Strait during the period of initial ?18O rise unfortunately are unknown." W. F. Ruddiman (1987, p. 151)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable carbon and oxygen isotope analyses were conducted on well-preserved planktonic and benthic foraminifers from a continuous middle Eocene to Oligocene sequence at Ocean Drilling Program (ODP) Site 748 on the Kerguelen Plateau. Benthic foraminifer d18O values show a 1.0 per mil increase through the middle and upper Eocene, followed by a rapid 1.2 per mil increase in the lowermost Oligocene (35.5 Ma). Surface-dwelling planktonic foraminifer d18O values increase in the lowermost Oligocene, but only by 0.6 per mil whereas intermediate-depth planktonic foraminifers show an increase of about l.0 per mil. Benthic foraminifer d13C values increase by 0.9 per mil in the lowermost Oligocene at precisely the same time as the large d18O increase, whereas planktonic foraminifer d13C values show little or no change. Site 748 oxygen isotope and paleontological records suggest that southern Indian Ocean surface and intermediate waters underwent significant cooling from the early to late Eocene. The rapid 1.2 per mil oxygen isotope increase recorded by benthic foraminifers just above the Eocene/Oligocene boundary represents the ubiquitous early Oligocene d18O event. The shift here is unique, however, as it coincided with the sudden appearance of ice-rafted debris (IRD), providing the first direct link between Antarctic glacial activity and the earliest Oligocene d18O increase. The d18O increase caused by the ice-volume change in the early Oligocene is constrained by (1) related changes in the planktonic to benthic foraminifer d18O gradient at Site 748 and (2) comparisons of late Eocene and early Oligocene planktonic foraminifer d18Ovalues from various latitudes. Both of these records indicate that 0.3 per mil to 0.4 per mil of the early Oligocene d18O increase was ice-volume related.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have shown that the Early Eocene Climatic Optimum (EECO) was preceded by a series of short-lived global warming events, known as hyperthermals. Here we present high-resolution benthic stable carbon and oxygen isotope records from ODP Sites 1262 and 1263 (Walvis Ridge, SE Atlantic) between ~54 and ~52 million years ago, tightly constraining the character, timing, and magnitude of six prominent hyperthermal events. These events, which include Eocene Thermal Maximum (ETM) 2 and 3, are studied in relation to orbital forcing and long-term trends. Our findings reveal an almost linear relationship between d13C and d18O for all these hyperthermals, indicating that the eccentricity-paced co-variance between deep-sea temperature changes and extreme perturbations in the exogenic carbon pool persisted during these events towards the onset of the EECO, in accord with previous observations for the Paleocene Eocene Thermal Maximum (PETM) and ETM2. The covariance of d13C and d18O during H2 and I2, which are the second pulses of the "paired" hyperthermal events ETM2-H2 and I1-I2, deviates with respect to the other events. We hypothesize that this could relate to a relatively higher contribution of an isotopically heavier source of carbon, such as peat or permafrost, and/or to climate feedbacks/local changes in circulation. Finally, the d18O records of the two sites show a systematic offset with on average 0.2 per mil heavier values for the shallower Site 1263, which we link to a slightly heavier isotopic composition of the intermediate water mass reaching the northeastern flank of the Walvis Ridge compared to that of the deeper northwestern water mass at Site 1262.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mid-Cretaceous (Barremian-Turonian) plankton preserved in deep-sea marl, organic-rich shale, and pelagic carbonate hold an important record of how the marine biosphere responded to short- and long-term changes in the ocean-climate system. Oceanic anoxic events (OAEs) were short-lived episodes of organic carbon burial that are distinguished by their widespread distribution as discrete beds of black shale and/or pronounced carbon isotopic excursions. OAE1a in the early Aptian (~120.5 Ma) and OAE2 at the Cenomanian/Turonian boundary (~93.5 Ma) were global in their distribution and associated with heightened marine productivity. OAE1b spans the Aptian/Albian boundary (~113-109 Ma) and represents a protracted interval of dysoxia with multiple discrete black shales across parts of Tethys (including Mexico), while OAE1d developed across eastern and western Tethys and in other locales during the latest Albian (~99.5 Ma). Mineralized plankton experienced accelerated rates of speciation and extinction at or near the major Cretaceous OAEs, and strontium isotopic evidence suggests a possible link to times of rapid oceanic plateau formation and/or increased rates of ridge crest volcanism. Elevated levels of trace metals in OAE1a and OAE2 strata suggest that marine productivity may have been facilitated by increased availability of dissolved iron. The association of plankton turnover and carbon isotopic excursions with each of the major OAEs, despite the variable geographic distribution of black shale accumulation, points to widespread changes in the ocean-climate system. Ocean crust production and hydrothermal activity increased in the late Aptian. Faster spreading rates [and/or increased ridge length] drove a long-term (Albian-early Turonian) rise in sea level and CO2-induced global warming. Changes in ocean circulation, water column stratification, and nutrient partitioning lead to a reorganization of plankton community structure and widespread carbonate (chalk) deposition during the Late Cretaceous. We conclude that there were important linkages between submarine volcanism, plankton evolution, and the cycling of carbon through the marine biosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on organic carbon accumulation rates, nine time slices of oceanic export paleoproductivity (Pnew) are presented which depict the variability of Pnew on a global scale through the last 30,000 years and document that the basic distribution patterns did not change through glacial and interglacial times. However, the glacial ocean shows an increased contrast of high- versus low-productivity zones. d13C values of near-surface-dwelling planktonic foraminifera Globigerinoides ruber suggest that the same contrast applies to the glacial nutrient inventories of the ambient surface waters, with a significant glacial transfer of PO4 from low- to high-productivity zones. In this way, glacial Pnew increased by a global average of about 2-4 Gt C/yr and led, via an enhanced CaCO3 dissolution and alkalinity in the deep ocean, to a significant extraction of CO2 from the surface water and the atrnosphere.