914 resultados para Speech and voice functions
Resumo:
This paper presents innovative work in the development of policy-based autonomic computing. The core of the work is a powerful and flexible policy-expression language AGILE, which facilitates run-time adaptable policy configuration of autonomic systems. AGILE also serves as an integrating platform for other self-management technologies including signal processing, automated trend analysis and utility functions. Each of these technologies has specific advantages and applicability to different types of dynamic adaptation. The AGILE platform enables seamless interoperability of the different technologies to each perform various aspects of self-management within a single application. The various technologies are implemented as object components. Self-management behaviour is specified using the policy language semantics to bind the various components together as required. Since the policy semantics support run-time re-configuration, the self-management architecture is dynamically composable. Additional benefits include the standardisation of the application programmer interface, terminology and semantics, and only a single point of embedding is required.
Resumo:
There is compelling evidence for the effectiveness of home-based occupational therapy and physiotherapy rehabilitation for community dwelling elderly who may struggle with basic activities and the functions of daily living and mobility. Nonetheless, an estimated 2% of home care’s elderly clients receive these therapies. Ontario’s home care data indicates that 78% of clients that could benefit from these specific therapies are not receiving them. The study examined a subset of elderly clients receiving home care following a hospital discharge during 2009-2010. The aim of this study was to: understand the difference between those home care clients who received occupational therapy or physiotherapy and those who did not; and determine if receiving these therapies impacted the utilization of hospital emergency departments and inpatient admissions. A retrospective cohort design and multivariate and survival analysis of hospital and home care administrative data structured the study. Results suggest that home-based rehabilitation is offered to a minority of the home care population. Distinct client characteristics and process variables significantly associated with the increased likelihood of receiving home-based occupational and physical therapies included: clients who were older, females, admitted to home care from hospital inpatient units, assessed as non-acute for clinical and service needs and required more home making support and assistance with activities of daily living. Almost one quarter of the total sample returned to hospital. Visits to emergency departments accounted for the greater part of hospital utilization and primarily for sub-acute general symptoms and signs, post-procedural complications, infections or acute episodes from chronic obstructive pulmonary disease and renal failure. Slightly over half of the clients returning to hospital did not receive home-based rehabilitation. Clients who received occupational therapy returned to the hospital sooner following their home care admission whereas clients receiving physiotherapy spent the longest time before rehospitalizing. The majority of the clients receiving occupational therapy were admitted to home care having just resolved sub-acute conditions or symptoms, many of which are known to influence functional and physical decline. Moreover, analysis of process variables indicated that the wait time for a referral to occupational therapy was two times longer compared to physiotherapy. These same clients also waited, on average, over one month before an occupational therapist’s first visit. The need to discriminate who receives home-based rehabilitation is essential to understanding how specific therapies contribute to improving systems outcomes. This study is the first examination that focuses specifically on home-based occupational therapy and physiotherapy rehabilitation and the client characteristics and process variables associated with receiving/not receiving these therapies and the impact these factors have on the time-to-rehospitalization.
Resumo:
Research on speech and emotion is moving from a period of exploratory research into one where there is a prospect of substantial applications, notably in human-computer interaction. Progress in the area relies heavily on the development of appropriate databases. This paper addresses the issues that need to be considered in developing databases of emotional speech, and shows how the challenge of developing apropriate databases is being addressed in three major recent projects - the Belfast project, the Reading-Leeds project and the CREST-ESP project. From these and other studies the paper draws together the tools and methods that have been developed, addresses the problems that arise and indicates the future directions for the development of emotional speech databases.
Resumo:
The heterotrimeric kinesin-II motor in Caenorhabditis elegans consists of KLP-20, KLP-11, and KAP-1 subunits and broadly functions in cellular transport for the development of biological structures including cilia and axons. The results of this paper support the ubiquitous and necessary role kinesin-II motors have in development, particularly the KLP-20 microtubule-associating subunit. Mutations in klp-20 result in a variable abnormal (vab) phenotype characterized by observable epidermal defects, although the role of this gene in development and the mechanism by which the vab phenotype is produced is largely unknown. The vab phenotype is highly penetrant in the first larval stage (L1) of C. elegans, which supports that klp-20 functions in early development. Ciliated amphid sensory neurons can be stained with a fluorescent dye, DiI, to simultaneously test cilia structure and function, as well as the morphology of the amphid sensory organ. Reduced dye uptake in klp-20 mutant L1s suggests that the microtubule-based cilia are under-developed as a result of defective kinesin-II function. Consistent observations of the PLM mechanosensory neuron using the zdIs5 reporter suggest that klp-20 has an essential role in neuron development, as mutations to klp-20 result in under-developed PLM axons. Qualitative observations suggest there may be an interaction between the development of the overlying epidermis and the underlying nervous system, as a more severe vab phenotype is observed simultaneously with reduced dye uptake, and hence amphid sensory cilia under-development. Furthermore, a more severe vab phenotype manifested as large bumps on the posterior epidermis appears to be spatially correlated with PLM defects. The results presented and discussed in this paper suggest that KLP-20 has a necessary role in neurodevelopment and epidermal morphogenesis in C. elegans during embryogenesis.
Resumo:
Gross anatomy of muscle and sensory/motor innervation of adult and intramolluscan developmental stages of Echinostoma caproni have been investigated to ascertain the organisation and the functional correlates of any stage-specific patterns of staining. Using indirect immunocytochemistry to demonstrate neuroactive substances and the phalloidin-fluorescence technique for staining myofibril F-actin, the muscle systems and aminergic and peptidergic innervation of daughter rediae, cercariae, metacercariae, and pre- and post-ovigerous adults were examined and compared using confocal scanning laser microscopy. A complex arrangement of specific muscle fibre systems occurs within the body wall (composed of circular, longitudinal and diagonal fibres), suckers (radial, equatorial, meridional), pharynx (radial, circular), gut caeca (mainly circular), cercarial tail (circular, pseudo-striated longitudinal), and ducts of the reproductive system (circular, longitudinal), presumed to serve locomotor, adhesive, alimentary and reproductive functions. Immunostaining for serotonin (5-HT) and FMRFamide-related peptides (FaRPs) was evident throughout the central (CNS) and peripheral (PNS) nervous systems of all stages, and use of dual-labelling techniques demonstrated separate neuronal pathways for 5-HT and FaRP in both CNS and PNS. FaRP expression in the innervation of the ootype wall was demonstrated only in post-ovigerous worms and not in pre-ovigerous worms, suggesting an involvement of FaRP neuropeptides in the process of egg assembly. Comparison of the present findings with those recorded for other digeneans suggests that muscle organisation and innervation patterns in trematodes are highly conserved.
Resumo:
The cholecystokinin (CCK) receptor-2 exerts very important central and peripheral functions by binding the neuropeptides cholecystokinin or gastrin. Because this receptor is a potential therapeutic target, great interest has been devoted to the identification of efficient antagonists. However, interspecies genetic polymorphism that does not alter cholecystokinin-induced signaling was shown to markedly affect activity of synthetic ligands. In this context, precise structural study of the agonist binding site on the human cholecystokinin receptor-2 is a prerequisite to elucidating the molecular basis for its activation and to optimizing properties of synthetic ligands. In this study, using site-directed mutagenesis and molecular modeling, we delineated the binding site for CCK on the human cholecystokinin receptor-2 by mutating amino acids corresponding to that of the rat homolog. By doing so, we demonstrated that, although resembling that of rat homolog, the human cholecystokinin receptor-2 binding site also displays important distinct structural features that were demonstrated by susceptibility to several point mutations (F120A, Y189A, H207A). Furthermore, docking of CCK in the human and rat cholecystokinin receptor-2, followed by dynamic simulations, allowed us to propose a plausible structural explanation of the experimentally observed difference between rat and human cholecystokinin-2 receptors.