931 resultados para Specific protein(s)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Snaclecs are small non-enzymatic proteins present in viper venoms reported to modulate haemostasis of victims through effects on platelets, vascular endothelial and smooth muscle cells. In this study, we have isolated and functionally characterised a snaclec which we named rhinocetin from the venom of West African gaboon viper, Bitis gabonica rhinoceros. Rhinocetin was shown to comprise α and β chains with the molecular masses of 13.5 and 13kDa respectively. Sequence and immunoblot analysis of rhinocetin confirmed this to be a novel snaclec. Rhinocetin inhibited collagen-stimulated activation of human platelets in dose dependent manner, but displayed no inhibitory effects on glycoprotein VI (collagen receptor) selective agonist, CRP-XL-, ADP- or thrombin-induced platelet activation. Rhinocetin antagonised the binding of monoclonal antibodies against the α2 subunit of integrin α2β1 to platelets and coimmunoprecipitation analysis confirmed integrin α2β1 as a target for this venom protein. Rhinocetin inhibited a range of collagen induced platelet functions such as fibrinogen binding, calcium mobilisation, granule secretion, aggregation and thrombus formation. It also inhibited integrin α2β1 dependent functions of human endothelial cells. Together, our data suggest rhinocetin to be a modulator of integrin α2β1 function and thus may provide valuable insights into the role of this integrin in physiological and pathophysiological scenarios including haemostasis, thrombosis and envenomation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have suggested recently that the fall in plasma CRF-binding protein (BP) during the last few weeks of pregnancy is a direct effect of association with its ligand because of the rapid decrease in plasma BP concentration seen in normal males reaching a nadir some 15 min after a bolus injection of synthetic CRF. In the present study, we have investigated the physicochemical properties of both natural and recombinant BP by gel filtration under physiological conditions and have shown that association of human CRF to this BP results in an increase in molecular weight consistent with the formation of a dimer form of the BP ligand complex. The dimer is more stable when the interaction occurs in the presence of serum or if a peptide with a higher affinity for the BP is substituted as ligand. Experimental evidence would also suggest that the dimer BP has a higher affinity for ligand than the monomeric form. We suggest that this dimerization occurs in vivo when CRF is released into the bloodstream and provides the trigger that causes the uptake of the complex at specific receptor sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enzymatic activity of peptidases must be tightly regulated to prevent uncontrolled hydrolysis of peptide bonds, which could have devastating effects in biological systems. Peptidases are often generated as inactive propeptidases, secreted with endogenous inhibitors or they are compartmentalized. Propeptidases become active after proteolytic removal of N-terminal activation peptides by other peptidases. Some peptidases only become active towards substrates only at certain pHs, thus confining activity to specific compartments or conditions. This review discusses the different roles proteolysis plays in regulating G protein-coupled receptors (GPCRs). At the cell-surface, certain GPCRs are regulated by the hydrolytic inactivation of bioactive peptides by membrane-anchored peptidases, which prevents signaling. Conversely, cell-surface peptidases can also generate bioactive peptides that directly activate GPCRs. Alternatively, cell-surface peptidases activated by GPCRs, can generate bioactive peptides to cause transactivation of receptor tyrosine kinases, thereby promoting signaling. Certain peptidases can signals directly to cells, by cleaving GPCR to initiate intracellular signaling cascades. Intracellular peptidases also regulate GPCRs; lysosomal peptidases destroy GPCRs in lysosomes to permanently terminate signaling and mediate downregulation; endosomal peptidases cleave internalized peptide agonists to regulate GPCR recycling, resensitization and signaling; and soluble intracellular peptidases also participate in GPCR function by regulating the ubiquitination state of GPCRs, thereby altering GPCR signaling and fate. Although the use of peptidase inhibitors has already brought success in the treatment of diseases such as hypertension, the discovery of new regulatory mechanisms involving proteolysis that control GPCRs may provide additional targets to modulate dysregulated GPCR signaling in disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth of the maize (Zea mays) endosperm is tightly regulated by maternal zygotic and sporophytic genes, some of which are subject to a parent-of-origin effect. We report here a novel gene, maternally expressed gene1 (meg1), which shows a maternal parent-of-origin expression pattern during early stages of endosperm development but biallelic expression at later stages. Interestingly, a stable reporter fusion containing the meg1 promoter exhibits a similar pattern of expression. meg1 is exclusively expressed in the basal transfer region of the endosperm. Further, we show that the putatively processed MEG1 protein is glycosylated and subsequently localized to the labyrinthine ingrowths of the transfer cell walls. Hence, the discovery of a parent-of-origin gene expressed solely in the basal transfer region opens the door to epigenetic mechanisms operating in the endosperm to regulate certain aspects of nutrient trafficking from the maternal tissue into the developing seed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein disulfide isomerase (PDI) derived from intravascular cells is required for thrombus formation. However, it remains unclear whether platelet PDI contributes to the process. Using platelet-specific PDI-deficient mice, we demonstrate that PDI-null platelets have defects in aggregation and ATP secretion induced by thrombin, collagen, and ADP. Such defects were rescued by exogenously-added wild-type but not mutant PDI, indicating that the isomerase activity of platelet surface PDI is critical for the regulatory effect. PDI-deficient platelets expressed increased levels of intracellular ERp57 and ERp72. Platelet PDI regulated αIIbβ3 integrin activation but not P-selectin exposure, Ca2+ mobilization, β3-talin interaction, and platelet spreading on immobilized fibrinogen. Inhibition of ERp57 further diminished αIIbβ3 integrin activation, aggregation and ATP secretion of activated PDI-deficient platelets, suggesting distinct roles of PDI and ERp57 in platelet functions. We found that platelet PDI is important for thrombus formation on collagen-coated surfaces under arteriolar shear. Intravital microscopy demonstrates that platelet PDI is important for platelet accumulation but not initial adhesion and fibrin generation following laser-induced arteriolar injury. Tail bleeding time and blood loss in platelet-specific PDI-deficient mice were not significantly increased. Our results provide important evidence that platelet PDI is essential for thrombus formation but not for hemostasis in mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wheat gluten proteins, gliadins and glutenins, are of great importance in determining the unique biomechanical properties of wheat. Studies have therefore been carried out to determine their pathways and mechanisms of synthesis, folding, and deposition in protein bodies. In the present work, a set of transgenic wheat lines has been studied with strongly suppressed levels of γ-gliadins and/or all groups of gliadins, using light and fluorescence microscopy combined with immunodetection using specific antibodies for γ-gliadins and HMW glutenin subunits. These lines represent a unique material to study the formation and fusion of protein bodies in developing seeds of wheat. Higher amounts of HMW subunits were present in most of the transgenic lines but only the lines with suppression of all gliadins showed differences in the formation and fusion of the protein bodies. Large rounded protein bodies were found in the wild-type lines and the transgenic lines with reduced levels of γ-gliadins, while the lines with all gliadins down-regulated had protein bodies of irregular shape and irregular formation. The size and number of inclusions, which have been reported to contain triticins, were also higher in the protein bodies in the lines with all the gliadins down-regulated. Changes in the protein composition and PB morphology reported in the transgenic lines with all gliadins down-regulated did not result in marked changes in the total protein content or instability of the different fractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have performed a screen combining subtractive hybridization with PCR to isolate genes that are regulated when neuroepithelial (NE) cells differentiate into neurons. From this screen, we have isolated a number of known genes that have not previously been associated with neurogenesis, together with several novel genes. Here we report that one of these genes, encoding a guanine nucleotide exchange factor (GEF), is regulated during the differentiation of distinct neuronal populations. We have cloned both rat and mouse GEF genes and shown that they are orthologs of the human gene, MR-GEF, which encodes a GEF that specifically activates the small GTPase, Rap1. We have therefore named the rat gene rat mr-gef (rmr-gef) and the mouse gene mouse mr-gef (mmr-gef). Here, we will collectively refer to these two rodent genes as mr-gef. Expression studies show that mr-gef is expressed by young neurons of the developing rodent CNS but not by progenitor cells in the ventricular zone (VZ). The expression pattern of mr-gef during early telencephalic neurogenesis is strikingly similar to that of GABA and the LIM homeobox gene Lhx6, a transcription factor expressed by GABAergic interneurons generated in the ventral telencephalon, some of which migrate into the cortex during development. These observations suggest that mr-gef encodes a protein that is part of a signaling pathway involved in telencephalic neurogenesis; particularly in the development of GABAergic interneurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rulAB operon of Pseudomonas spp. confers fitness traits on the host and has been suggested to be a hotspot for insertion of mobile elements that carry avirulence genes. Here, for the first time, we show that rulB on plasmid pWW0 is a hotspot for the active site-specific integration of related integron-like elements (ILEs) found in six environmental pseudomonads (strains FH1–FH6). Integration into rulB on pWW0 occurred at position 6488 generating a 3 bp direct repeat. ILEs from FH1 and FH5 were 9403 bp in length and contained eight open reading frames (ORFs), while the ILE from FH4 was 16 233 bp in length and contained 16 ORFs. In all three ILEs, the first 5.1 kb (containing ORFs 1–4) were structurally conserved and contained three predicted site-specific recombinases/integrases and a tetR homologue. Downstream of these resided ORFs of the ‘variable side’ with structural and sequence similarity to those encoding survival traits on the fitness enhancing plasmid pGRT1 (ILEFH1 and ILEFH5) and the NR-II virulence region of genomic island PAGI-5 (ILEFH4). Collectively, these ILEs share features with the previously described type III protein secretion system effector ILEs and are considered important to host survival and transfer of fitness enhancing and (a)virulence genes between bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aims The trafficking of proteins in the endoplasmic reticulum (ER) of plant cells is a topic of considerable interest since this organelle serves as an entry point for proteins destined for other organelles, as well as for the ER itself. In the current work, transgenic rice was used to study the pattern and pathway of deposition of the wheat high molecular weight (HMW) glutenin sub-unit (GS) 1Dx5 within the rice endosperm using specific antibodies to determine whether it is deposited in the same or different protein bodies from the rice storage proteins, and whether it is located in the same or separate phases within these. Methods The protein distribution and the expression pattern of HMW sub-unit 1Dx5 in transgenic rice endosperm at different stages of development were determined using light and electron microscopy after labelling with antibodies. Key results The use of HMW-GS-specific antibodies showed that sub-unit 1Dx5 was expressed mainly in the sub-aleurone cells of the endosperm and that it was deposited in both types of protein body present in the rice endosperm: derived from the ER and containing prolamins, and derived from the vacuole and containing glutelins. In addition, new types of protein bodies were also formed within the endosperm cells. Conclusions The results suggest that the HMW 1Dx5 protein could be trafficked by either the ER or vacuolar pathway, possibly depending on the stage of development, and that its accumulation in the rice endosperm could compromise the structural integrity of protein bodies and their segregation into two distinct populations in the mature endosperm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types. Here, we review some of the main interacting proteins of GPCRs. A greater understanding of the mechanisms regulating their interactions may lead to the discovery of new drug targets for therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. Protein kinases are potential therapeutic targets for heart failure, but most studies of cardiac protein kinases derive from other systems, an approach that fails to account for specific kinases expressed in the heart and the contractile cardiomyocytes. We aimed to define the cardiomyocyte kinome (i.e. the protein kinases expressed in cardiomyocytes) and identify kinases with altered expression in human failing hearts. Methods and Results. Expression profiling (Affymetrix microarrays) detected >400 protein kinase mRNAs in rat neonatal ventricular myocytes (NVMs) and/or adult ventricular myocytes (AVMs), 32 and 93 of which were significantly upregulated or downregulated (>2-fold), respectively, in AVMs. Data for AGC family members were validated by qPCR. Proteomics analysis identified >180 cardiomyocyte protein kinases, with high relative expression of mitogen-activated protein kinase cascades and other known cardiomyocyte kinases (e.g. CAMKs, cAMP-dependent protein kinase). Other kinases are poorly-investigated (e.g. Slk, Stk24, Oxsr1). Expression of Akt1/2/3, BRaf, ERK1/2, Map2k1, Map3k8, Map4k4, MST1/3, p38-MAPK, PKCδ, Pkn2, Ripk1/2, Tnni3k and Zak was confirmed by immunoblotting. Relative to total protein, Map3k8 and Tnni3k were upregulated in AVMs vs NVMs. Microarray data for human hearts demonstrated variation in kinome expression that may influence responses to kinase inhibitor therapies. Furthermore, some kinases were upregulated (e.g. NRK, JAK2, STK38L) or downregulated (e.g. MAP2K1, IRAK1, STK40) in human failing hearts. Conclusions. This characterization of the spectrum of kinases expressed in cardiomyocytes and the heart (cardiomyocyte and cardiac kinomes) identified novel kinases, some of which are differentially expressed in failing human hearts and could serve as potential therapeutic targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of protein kinase C (PKC) isoforms (PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta) was studied by immunoblotting in whole ventricles of rat hearts during postnatal development (1-26 days) and in the adult. PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta were detected in ventricles of 1-day-old rats, although PKC-alpha and PKC-beta 1 were only barely detectable. All isoforms were rapidly downregulated during development, with abundances relative to total protein declining in the adult to < 25% of 1-day-old values. PKC-beta 1 was not detectable in adult ventricles. The specific activity of PKC was also downregulated. The rat ventricular myocyte becomes amitotic soon after birth but continues to grow, increasing its protein content 40- to 50-fold between the neonate and the 300-g adult. An important question is thus whether the amount of PKC per myocyte is downregulated. With the use of isolated cells, immunoblotting showed that the contents per myocyte of PKC-alpha and PKC-epsilon increased approximately 10-fold between the neonatal and adult stages. In rat ventricles, the rank of association with the particulate fraction was PKC-delta > PKC-epsilon > PKC-zeta. Association of these isoforms with the particulate fraction was less in the adult than in the neonate. In primary cultures of ventricular myocytes prepared from neonatal rat hearts, 1 microM 12-O-tetradecanoylphorbol-13-acetate (TPA) elicited translocation of PKC-alpha, PKC-delta, and PKC-epsilon from the soluble to the particulate fraction in < 1 min, after which time no further translocation was observed. Prolonged exposure (16 h) of myocytes to 1 microM TPA caused essentially complete downregulation of these isoforms, although downregulation of PKC-epsilon was slower than for PKC-delta. In contrast, PKC-zeta was neither translocated nor downregulated by 1 microM TPA. Immunoblotting of human ventricular samples also revealed downregulation of PKC relative to total protein during fetal/postnatal development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction between tryptophan-rich puroindoline proteins and model bacterial membranes at the air-liquid interface has been investigated by FTIR spectroscopy, surface pressure measurements and Brewster angle microscopy. The role of different lipid constituents on the interactions between lipid membrane and protein was studied using wild type (Pin-b) and mutant (Trp44 to Arg44 mutant, Pin-bs) puroindoline proteins. The results show differences in the lipid selectivity of the two proteins in terms of preferential binding to specific lipid head groups in mixed lipid systems. Pin-b wild type was able to penetrate mixed layers of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) head groups more deeply compared to the mutant Pin-bs. Increasing saturation of the lipid tails increased penetration and adsorption of Pin-b wild type, but again the response of the mutant form differed. The results provide insight as to the role of membrane architecture, lipid composition and fluidity, on antimicrobial activity of proteins. Data show distinct differences in the lipid binding behavior of Pin-b as a result of a single residue mutation, highlighting the importance of hydrophobic and charged amino acids in antimicrobial protein and peptide activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vivo, enzymatic reduction of some protein disulfide bonds, allosteric disulfide bonds, provides an important level of structural and functional regulation. The free cysteine residues generated can be labeled by maleimide reagents, including biotin derivatives, allowing the reduced protein to be detected or purified. During the screening of monoclonal antibodies for those specific for the reduced forms of proteins, we isolated OX133, a unique antibody that recognizes polypeptide resident, N-ethylmaleimide (NEM)-modified cysteine residues in a sequence-independent manner. OX133 offers an alternative to biotin-maleimide reagents for labeling reduced/alkylated antigens and capturing reduced/alkylated proteins with the advantage that NEM-modified proteins are more easily detected in mass spectrometry, and may be more easily recovered than is the case following capture with biotin based reagents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prion protein (PrP(C)) is a conserved glycosylphosphatidyl-inositol-anchored cell surface protein expressed by neurons and other cells. Stress-inducible protein 1 (STI1) binds PrP(C) extracellularly, and this activated signaling complex promotes neuronal differentiation and neuroprotection via the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP-dependent protein kinase 1 (PKA) pathways. However, the mechanism by which the PrPC-STI1 interaction transduces extracellular signals to the intracellular environment is unknown. We found that in hippocampal neurons, STI1-PrP(C) engagement induces an increase in intracellular Ca(2+) levels. This effect was not detected in PrP(C)-null neurons or wild-type neurons treated with an STI1 mutant unable to bind PrP(C). Using a best candidate approach to test for potential channels involved in Ca(2+) influx evoked by STI1-PrP(C), we found that alpha-bungarotoxin, a specific inhibitor for alpha 7 nicotinic acetylcholine receptor (alpha 7nAChR), was able to block PrP(C)-STI1-mediated signaling, neuroprotection, and neuritogenesis. Importantly, when alpha 7nAChR was transfected into HEK 293 cells, it formed a functional complex with PrP(C) and allowed reconstitution of signaling by PrP(C)-STI1 interaction. These results indicate that STI1 can interact with the PrP(C).alpha 7nAChR complex to promote signaling and provide a novel potential target for modulation of the effects of prion protein in neurodegenerative diseases.