939 resultados para Source-sink potential
Resumo:
As global warming entails new conditions for the built environment, the thermal and energy performance of existing buildings, which are designed based on current weather data, may become unclear and remain a great concern. Through building computer simulation and qualitative analysis of the weighted factor for the outdoor temperature impact on building energy and thermal performance, this paper investigates the sensitivity of different office building zoning to the potential global warming. A standard office building type is examined for all eight capital cities in Australia. Results show that comparing the middle and top floors, except for cool climate (i.e. Hobart), the ground floor appears to be the most sensitive to the effect of global warming and has the highest tendency for a overheating problem. From the analysis of the responses of different zone orientations to the outdoor air temperature increase, it is also found that there are widely varied responses between zone orientations, with South zone (in the southern hemisphere) being the most sensitive. With an increased external air temperature, the variation between different floors or zone orientations will become more significant, up to 53 percent increase of overheating hours in Darwin and 47 percent increase of cooling load in Hobart.
Resumo:
Computational models for cardiomyocyte action potentials (AP) often make use of a large parameter set. This parameter set can contain some elements that are fitted to experimental data independently of any other element, some elements that are derived concurrently with other elements to match experimental data, and some elements that are derived purely from phenomenological fitting to produce the desired AP output. Furthermore, models can make use of several different data sets, not always derived for the same conditions or even the same species. It is consequently uncertain whether the parameter set for a given model is physiologically accurate. Furthermore, it is only recently that the possibility of degeneracy in parameter values in producing a given simulation output has started to be addressed. In this study, we examine the effects of varying two parameters (the L-type calcium current (I(CaL)) and the delayed rectifier potassium current (I(Ks))) in a computational model of a rabbit ventricular cardiomyocyte AP on both the membrane potential (V(m)) and calcium (Ca(2+)) transient. It will subsequently be determined if there is degeneracy in this model to these parameter values, which will have important implications on the stability of these models to cell-to-cell parameter variation, and also whether the current methodology for generating parameter values is flawed. The accuracy of AP duration (APD) as an indicator of AP shape will also be assessed.
Resumo:
The action potential (ap) of a cardiac cell is made up of a complex balance of ionic currents which flow across the cell membrane in response to electrical excitation of the cell. Biophysically detailed mathematical models of the ap have grown larger in terms of the variables and parameters required to model new findings in subcellular ionic mechanisms. The fitting of parameters to such models has seen a large degree of parameter and module re-use from earlier models. An alternative method for modelling electrically exciteable cardiac tissue is a phenomenological model, which reconstructs tissue level ap wave behaviour without subcellular details. A new parameter estimation technique to fit the morphology of the ap in a four variable phenomenological model is presented. An approximation of a nonlinear ordinary differential equation model is established that corresponds to the given phenomenological model of the cardiac ap. The parameter estimation problem is converted into a minimisation problem for the unknown parameters. A modified hybrid Nelder–Mead simplex search and particle swarm optimization is then used to solve the minimisation problem for the unknown parameters. The successful fitting of data generated from a well known biophysically detailed model is demonstrated. A successful fit to an experimental ap recording that contains both noise and experimental artefacts is also produced. The parameter estimation method’s ability to fit a complex morphology to a model with substantially more parameters than previously used is established.
Resumo:
Introduction: Almost 90% of Australian mothers are exclusively breastfeeding when they discharge from maternity hospitals but by six months of age breastfeeding infants have reduced to 32% nationally and 19% in Queensland, far below the national target of 80%. Many factors influence the choice to breastfeed, including health care provision, therefore the knowledge and attitudes of paediatric nurses have the potential to affect breastfeeding duration. Aims: To assess current breastfeeding knowledge and attitudes of paediatric nurses in metropolitan and regional Queensland settings. Method: The study used a cross-sectional survey design. The tool was developed from several documented health professional questionnaires about breastfeeding, with permission from authors. Survey items relating breastfeeding physiology, factors relating to breastfeeding success, and local, national and international policies were also included. Ethics approval was granted from the appropriate Ethics Committees to conduct the survey through tertiary metropolitan and regional hospital settings. Results: A total of 241 surveys were returned, achieving a response rate of 53%. Nurses acknowledged breastmilk as the best source of nutrition for infants (99%, n=238) and that mothers should be encouraged to breastfeed (92%, n=221). However, many respondents considered infant formula a nutritional equivalent (44%, n=105) and (47%, n=113) were unaware that supplemental formulas interfered with successful breastfeeding. Most nurses recognised that stress (e.g. infant hospitalisation) impacts on the success of breastfeeding (90%, n=216). Knowledge of breastfeeding anatomy and physiology was poor and a substantial number of nurses did not identify correct attachment in response to two diagrammatic representations (76%, n=183 and 45%, n=109). Survey results demonstrated deficiencies in knowledge that would impact on support provided to breastfeeding mothers. Knowledge deficits were also identified relating to local, national and international policies and protocols concerning breastfeeding and breastmilk substitutes. Conclusion: Breastfeeding knowledge and attitudes were exceptional in areas related to general breastfeeding knowledge. However, in areas directly related to nursing practice, considerable deficits in paediatric nurses' knowledge and attitudes were identified. Lack of appropriate skills, knowledge and varying attitudes amongst paediatric nurses has the potential to negatively impact on the education, advice and support provided to breastfeeding mothers and their families whilst their infant is in hospital. These study findings will guide future research and strategies to improve knowledge and policy statements to assist paediatric nurses in fulfilling their role.
Resumo:
The aim of this study is to assess the potential use of Bluetooth data for traffic monitoring of arterial road networks. Bluetooth data provides the direct measurement of travel time between pairs of scanners, and intensive research has been reported on this topic. Bluetooth data includes “Duration” data, which represents the time spent by Bluetooth devices to pass through the detection range of Bluetooth scanners. If the scanners are located at signalised intersections, this Duration can be related to intersection performance, and hence represents valuable information for traffic monitoring. However the use of Duration has been ignored in previous analyses. In this study, the Duration data as well as travel time data is analysed to capture the traffic condition of a main arterial route in Brisbane. The data consists of one week of Bluetooth data provided by Brisbane City Council. As well, micro simulation analysis is conducted to further investigate the properties of Duration. The results reveal characteristics of Duration, and address future research needs to utilise this valuable data source.
Resumo:
Periprosthetic fractures are increasingly frequent. The fracture may be located over the shaft of the prosthesis, at its tip or below (21). The treatment of explosion fractures is difficult because the shaft blocks the application of implants, like screws, which need to penetrate the medullary cavity. The cerclage, as a simple periosteal loop, made of wire or more recently cable, does not only avoid the medullary cavity. Its centripetal mode of action is well suited for reducing and maintaining radially displaced fractures. Furthermore, the cerclage lends itself well for minimally invasive internal fixation. New insight challenges the disrepute of which the cerclage technology suffered for decades. The outcome of cerclage fixation benefits from an improved understanding of its technology, mechano-biology and periosteal blood supply. Preconceived and generally accepted opinions like "strangulation of blood supply" need to be re-examined. Recent mechanical evaluations (22) demonstrate that the wire application may be improved but cable is superior in hand- ling, maintenance of tension and strength. Beside the classical concepts of absolute and relative stability a defined stability condition needs consideration. It is typical for cerclage. Called "loose-lock stability" it specifies the situation where a loosened implant allows first unimpeded displacement changing abruptly into a locked fixation preventing further dislocation.
Resumo:
We have previously reported that novel vitronectin:growth factor (VN:GF) complexes significantly increase re-epithelialization in a porcine deep dermal partial-thickness burn model. However, the potential exists to further enhance the healing response through combination with an appropriate delivery vehicle which facilitates sustained local release and reduced doses of VN:GF complexes. Hyaluronic acid (HA), an abundant constituent of the interstitium, is known to function as a reservoir for growth factors and other bioactive species. The physicochemical properties of HA confer it with an ability to sustain elevated pericellular concentrations of these species. This has been proposed to arise via HA prolonging interactions of the bioactive species with cell surface receptors and/or protecting them from degradation. In view of this, the potential of HA to facilitate the topical delivery of VN:GF complexes was evaluated. Two-dimensional (2D) monolayer cell cultures and 3D de-epidermised dermis (DED) human skin equivalent (HSE) models were used to test skin cell responses to HA and VN:GF complexes. Our 2D studies revealed that VN:GF complexes and HA stimulate the proliferation of human fibroblasts but not keratinocytes. Experiments in our 3D DED-HSE models showed that VN:GF complexes, both alone and in conjunction with HA, led to enhanced development of both the proliferative and differentiating layers in the DED-HSE models. However, there was no significant difference between the thicknesses of the epidermis treated with VN:GF complexes alone and VN:GF complexes together with HA. While the addition of HA did not enhance all the cellular responses to VN:GF complexes examined, it was not inhibitory, and may confer other advantages related to enhanced absorption and transport that could be beneficial in delivery of the VN:GF complexes to wounds.
Resumo:
Open-source software systems have become a viable alternative to proprietary systems. We collected data on the usage of an open-source workflow management system developed by a university research group, and examined this data with a focus on how three different user cohorts – students, academics and industry professionals – develop behavioral intentions to use the system. Building upon a framework of motivational components, we examined the group differences in extrinsic versus intrinsic motivations on continued usage intentions. Our study provides a detailed understanding of the use of open-source workflow management systems in different user communities. Moreover, it discusses implications for the provision of workflow management systems, the user-specific management of open-source systems and the development of services in the wider user community.
Resumo:
Microbial pollution in water periodically affects human health in Australia, particularly in times of drought and flood. There is an increasing need for the control of waterborn microbial pathogens. Methods, allowing the determination of the origin of faecal contamination in water, are generally referred to as Microbial Source Tracking (MST). Various approaches have been evaluated as indicatorsof microbial pathogens in water samples, including detection of different microorganisms and various host-specific markers. However, until today there have been no universal MST methods that could reliably determine the source (human or animal) of faecal contamination. Therefore, the use of multiple approaches is frequently advised. MST is currently recognised as a research tool, rather than something to be included in routine practices. The main focus of this research was to develop novel and universally applicable methods to meet the demands for MST methods in routine testing of water samples. Escherichia coli was chosen initially as the object organism for our studies as, historically and globally, it is the standard indicator of microbial contamination in water. In this thesis, three approaches are described: single nucleotide polymorphism (SNP) genotyping, clustered regularly interspaced short palindromic repeats (CRISPR) screening using high resolution melt analysis (HRMA) methods and phage detection development based on CRISPR types. The advantage of the combination SNP genotyping and CRISPR genes has been discussed in this study. For the first time, a highly discriminatory single nucleotide polymorphism interrogation of E. coli population was applied to identify the host-specific cluster. Six human and one animal-specific SNP profile were revealed. SNP genotyping was successfully applied in the field investigations of the Coomera watershed, South-East Queensland, Australia. Four human profiles [11], [29], [32] and [45] and animal specific SNP profile [7] were detected in water. Two human-specific profiles [29] and [11] were found to be prevalent in the samples over a time period of years. The rainfall (24 and 72 hours), tide height and time, general land use (rural, suburban), seasons, distance from the river mouth and salinity show a lack of relashionship with the diversity of SNP profiles present in the Coomera watershed (p values > 0.05). Nevertheless, SNP genotyping method is able to identify and distinquish between human- and non-human specific E. coli isolates in water sources within one day. In some samples, only mixed profiles were detected. To further investigate host-specificity in these mixed profiles CRISPR screening protocol was developed, to be used on the set of E. coli, previously analysed for SNP profiles. CRISPR loci, which are the pattern of previous DNA coliphages attacks, were considered to be a promising tool for detecting host-specific markers in E. coli. Spacers in CRISPR loci could also reveal the dynamics of virulence in E. coli as well in other pathogens in water. Despite the fact that host-specificity was not observed in the set of E. coli analysed, CRISPR alleles were shown to be useful in detection of the geographical site of sources. HRMA allows determination of ‘different’ and ‘same’ CRISPR alleles and can be introduced in water monitoring as a cost-effective and rapid method. Overall, we show that the identified human specific SNP profiles [11], [29], [32] and [45] can be useful as marker genotypes globally for identification of human faecal contamination in water. Developed in the current study, the SNP typing approach can be used in water monitoring laboratories as an inexpensive, high-throughput and easy adapted protocol. The unique approach based on E. coli spacers for the search for unknown phage was developed to examine the host-specifity in phage sequences. Preliminary experiments on the recombinant plasmids showed the possibility of using this method for recovering phage sequences. Future studies will determine the host-specificity of DNA phage genotyping as soon as first reliable sequences can be acquired. No doubt, only implication of multiple approaches in MST will allow identification of the character of microbial contamination with higher confidence and readability.
Resumo:
Originally launched in 2005 with a focus on user-generated content, YouTube has become the dominant platform for online video worldwide, and an important location for some of the most significant trends and controversies in the contemporary new-media environment. Throughout its very short history, it has also intersected with and been the focus of scholarly debates related to the politics, economics, and cultures of the new media—in particular, the “participatory turn” associated with “Web 2.0” business models’ partial reliance on amateur content and social networking. Given the slow pace of traditional scholarly publishing, the body of media and cultural studies literature substantively dedicated to describing and critically understanding YouTube’s texts, practices, and politics is still small, but it is growing steadily. At the same time, since its inception scholars from a wide range of disciplines and critical perspectives have found YouTube useful as a source of examples and case studies, some of which are included here; others have experimented directly with the scholarly and educational potential of the platform itself. For these reasons, although primarily based around the traditional publishing outlets for media, Internet, and cultural studies, this bibliography draws eclectically on a wide range of sources—including sources very closely associated with the web business literature and with the YouTube community itself.
Resumo:
This paper presents the hardware development and testing of a new concept for air sampling via the integration of a prototype spore trap onboard an unmanned aerial system (UAS).We propose the integration of a prototype spore trap onboard a UAS to allow multiple capture of spores of pathogens in single remote locations at high or low altitude, otherwise not possible with stationary sampling devices.We also demonstrate the capability of this system for the capture of multiple time-stamped samples during a single mission.Wind tunnel testing was followed by simulation, and flight testing was conducted to measure and quantify the spread during simulated airborne air sampling operations. During autonomous operations, the onboard autopilot commands the servo to rotate the sampling device to a new indexed location once the UAS vehicle reaches the predefined waypoint or set of waypoints (which represents the region of interest). Time-stamped UAS data are continuously logged during the flight to assist with analysis of the particles collected. Testing and validation of the autopilot and spore trap integration, functionality, and performance is described. These tools may enhance the ability to detect new incursions of spores
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.
Resumo:
A better understanding of Open Source Innovation in Physical Product (OSIP) might allow project managers to mitigate risks associated with this innovation model and process, while developing the right strategies to maximise OSIP outputs. In the software industry, firms have been highly successful using Open Source Innovation (OSI) strategies. However, OSI in the physical world has not been studied leading to the research question: What advantages and disadvantages do organisations incur from using OSI in physical products? An exploratory research methodology supported by thirteen semi-structured interviews helped us build a seven-theme framework to categorise advantages and disadvantages elements linked with the use of OSIP. In addition, factors impacting advantage and disadvantage elements for firms using OSIP were identified as: „h Degree of openness in OSIP projects; „h Time of release of OSIP in the public domain; „h Use of Open Source Innovation in Software (OSIS) in conjunction with OSIP; „h Project management elements (Project oversight, scope and modularity); „h Firms. Corporate Social Responsibility (CSR) values; „h Value of the OSIP project to the community. This thesis makes a contribution to the body of innovation theory by identifying advantages and disadvantages elements of OSIP. Then, from a contingency perspective it identifies factors which enhance or decrease advantages, or mitigate/ or increase disadvantages of OSIP. In the end, the research clarifies the understanding of OSI by clearly setting OSIP apart from OSIS. The main practical contribution of this paper is to provide manager with a framework to better understand OSIP as well as providing a model, which identifies contingency factors increasing advantage and decreasing disadvantage. Overall, the research allows managers to make informed decisions about when they can use OSIP and how they can develop strategies to make OSIP a viable proposition. In addition, this paper demonstrates that advantages identified in OSIS cannot all be transferred to OSIP, thus OSIP decisions should not be based upon OSIS knowledge.
Resumo:
Soluble organic matter derived from exotic Pinus vegetation forms stronger complexes with iron (Fe) than the soluble organic matter derived from most native Australian species. This has lead to concern about the environmental impacts related to the establishment of extensive exotic Pinus plantations in coastal southeast Queensland, Australia. It has been suggested that the Pinus plantations may enhance the solubility of Fe in soils by increasing the amount of organically complexed Fe. While this remains inconclusive, the environmental impacts of an increased flux of dissolved, organically complexed Fe from soils to the fluvial system and then to sensitive coastal ecosystems are potentially damaging. Previous work investigated a small number of samples, was largely laboratory based and had limited application to field conditions. These assessments lacked field-based studies, including the comparison of the soil water chemistry of sites associated with Pinus vegetation and undisturbed native vegetation. In addition, the main controls on the distribution and mobilisation of Fe in soils of this subtropical coastal region have not been determined. This information is required in order to better understand the relative significance of any Pinus enhanced solubility of Fe. The main aim of this thesis is to determine the controls on Fe distribution and mobilisation in soils and soil waters of a representative coastal catchment in southeast Queensland (Poona Creek catchment, Fraser Coast) and to test the effect of Pinus vegetation on the solubility and speciation of Fe. The thesis is structured around three individual papers. The first paper identifies the main processes responsible for the distribution and mobilisation of labile Fe in the study area and takes a catchment scale approach. Physicochemical attributes of 120 soil samples distributed throughout the catchment are analysed, and a new multivariate data analysis approach (Kohonen’s self organising maps) is used to identify the conditions associated with high labile Fe. The second paper establishes whether Fe nodules play a major role as an iron source in the catchment, by determining the genetic mechanism responsible for their formation. The nodules are a major pool of Fe in much of the region and previous studies have implied that they may be involved in redox-controlled mobilisation and redistribution of Fe. This is achieved by combining a detailed study of a ferric soil profile (morphology, mineralogy and micromorphology) with the distribution of Fe nodules on a catchment scale. The third component of the thesis tests whether the concentration and speciation of Fe in soil solutions from Pinus plantations differs significantly from native vegetation soil solutions. Microlysimeters are employed to collect unaltered, in situ soil water samples. The redox speciation of Fe is determined spectrophotometrically and the interaction between Fe and dissolved organic matter (DOM) is modelled with the Stockholm Humic Model. The thesis provides a better understanding of the controls on the distribution, concentration and speciation of Fe in the soils and soil waters of southeast Queensland. Reductive dissolution is the main mechanism by which mobilisation of Fe occurs in the study area. Labile Fe concentrations are low overall, particularly in the sandy soils of the coastal plain. However, high labile Fe is common in seasonally waterlogged and clay-rich soils which are exposed to fluctuating redox conditions and in organic-rich soils adjacent to streams. Clay-rich soils are most common in the upper parts of the catchment. Fe nodules were shown to have a negligible role in the redistribution of dissolved iron in the catchment. They are formed by the erosion, colluvial transport and chemical weathering of iron-rich sandstones. The ferric horizons, in which nodules are commonly concentrated, subsequently form through differential biological mixing of the soil. Whereas dissolution/ reprecipitation of the Fe cements is an important component of nodule formation, mobilised Fe reprecipitates locally. Dissolved Fe in the soil waters is almost entirely in the ferrous form. Vegetation type does not affect the concentration and speciation of Fe in soil waters, although Pinus DOM has greater acidic functional group site densities than DOM from native vegetation. Iron concentrations are highest in the high DOM soil waters collected from sandy podosols, where they are controlled by redox potential. Iron concentrations are low in soil solutions from clay and iron oxide rich soils, in spite of similar redox potentials. This is related to stronger sorption to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for microbial metabolisation and reductive dissolution of Fe. Modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxidising conditions. Thus, inputs of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides and increase the flux of dissolved iron out of the catchment. Such inputs are most likely from the lower catchment, where podosols planted with Pinus are most widely distributed. Significant outcomes other than the main aims were also achieved. It is shown that mobilisation of Fe in podosols can occur as dissolved Fe(II) rather than as Fe(III)-organic complexes. This has implications for the large body of work which assumes that Fe(II) plays a minor role. Also, the first paper demonstrates that a data analysis approach based on Kohonen’s self organising maps can facilitate the interpretation of complex datasets and can help identify geochemical processes operating on a catchment scale.
Resumo:
Human resource development (HRD) has evolved a great deal over the past 20 years. Indeed, developments in HRD theory, research and practice have helped transform HRD from a reactive function focusing on administrative and bureaucratic issues to a proactive function focusing on creating learning and development opportunities for employees that not only allow them to achieve their potential but also make a substantial contribution to the longterm survival and sustainability of the organisation. HRD is now seen as an investment in the future of an organisation. This investment perspective is based on the recognition that HRD is linked to business strategy and the achievement of competitive advantage (Caravan et al. 2002). One reason for the shift in emphasis is that many of the traditional sources of competitive advantage (technology, economies of scale) have diminished in value. Nowadays it is the workforce that has come to be seen as an important source of competitive advantage for the organisation. However, not too long ago employees were viewed by management as a disposable resource rather than an asset to an organisation.