993 resultados para Source-sink


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroabsorption (EA) modulator integrated with partially gain coupling distributed feedback (DFB) lasers have been fabricated and shown high single mode yield and wavelength stability. The small signal bandwidth is about 7.5 GHz. Strained Si1-chiGechi/Si multiple quantum well (MQW) resonant-cavity enhanced (RCE) photodetectors with SiO2/Si distributed Bragg reflector (DBR) as the mirrors have been fabricated and shown a clear narrow bandwidth response. The external quantum efficiency at 1.3 mum is measured to be about 3.5% under reverse bias of 16 V. A novel GaInNAs/GaAs MQW RCE p-i-n photodetector with high reflectance GaAs/ALAs DBR mirrors has also been demonstrated and shown the selectively detecting function with the FWHM of peak response of 12 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality GaN epilayers were consistently obtained using a home-made gas-sourer MBE system on sapphire substrates. Room-temperature electron mobility of the grown GaN film is 300 cm(2)/V s with a background electron concentration as low as 2 x 10(17) cm(-3) The full-width at half-maximum of the GaN (0 0 0 2) double-crystal X-ray rocking curve is 6 arcmin. At low temperature (3.5 K), the FWHM of the: near-band-edge photoluminescence emission line is 10 meV. Furthermore, using piezoelectric effect alone with the high-quality films, two-dimensional electron gas was formed in a GaN/AlN/GaN/sapphire structure. Its room-temperature and low-temperature (77 K) electron mobility is 680 cm(2)/V s and 1700 cm(2)/V s, and the corresponding sheet electron density is 3.2 x 10(13) and 2.6 x 10(13) cm(-2), respectively. (C) 2001 Published by Elsevier Science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas source molecular beam epitaxy has been used to grow Si1-xGex alloys and Si1-xGex/Si multi-quantum wells (MQWs) on (100) Si substrates with Si2H6 and GeH4 as sources. Heterostructures and MQWs with mirror-like surface morphology, good crystalline qualify, and abrupt interfaces have been studied by a variety of in situ and ex situ techniques. The structural stability and strain relaxation in Si1-xGex/Si heterostructures have been investigated, and compared to that in the As ion-implanted Si1-xGex epilayers. The results show that the strain relaxation mechanism of the non-implanted Si1-xGex epilayers is different from that of the As ion-implanted Si1-xGex epilayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

土壤微生物量、可溶性有机碳与氮虽然只占土壤有机碳、氮总量的较小部分,但可以在土壤全碳、氮变化之前反映土壤微小的变化,又直接参与土壤生物化学转化过程,因而在植被恢复过程中,较其它土壤理化性质等能够更好地指示土壤恢复情况。在青藏高原东缘存在大面积的次生人工林替代灌丛或采伐迹地,而关于这些人工林替代后的生态效果和生态过程的评估却十分缺乏,本研究通过评估岷江上游植被恢复重建过程中典型人工替代次生植被凋落物层与土壤碳、氮等养分大小,动态监测土壤微生物生物量、水溶性碳、氮等指标,结合温度与凋落物输入等影响土壤活性有机碳、氮因子的控制试验,系统分析不同人工替代次生植被土壤碳、氮等养分的差异原因,试图寻找低效人工林优化调控与持续管理技术,为区域生态公益林持续管理提供理论和技术依据。主要结论如下: 1. 通过对不同人工替代次生植被凋落物层和土壤碳、氮分析发现,油松和华山松人工林替代次生灌丛后土壤碳、氮含量较灌丛和阔叶人工林低,主要原因可能为凋落物质量(C/N)较差,而引起碳、氮等元素难以归还土壤。进而通过对不同人工替代次生植被凋落物层和土壤微生物生物量、水溶性有机碳、氮等指标的季节性动态模式的分析,发现各次生植被土壤微生物生物量C、N,P以及土壤水溶性碳、氮含量均呈明显季节性动态,呈现秋季明显大于其它季节,冬季最低,在表层土壤最为明显。 2. 油松、华山松人工林凋落物层和土壤水溶性有机碳(WDOC)、土壤水溶性有机氮(WDON)明显低于灌丛和连香树,土壤微生物生物量C、N也以油松和华山松人工林最低,而落叶类植被,如灌丛、连香树和落叶松之间没有明显差异,说明可利用底物的数量和质量差异是影响各次生植被凋落物分解和土壤微生物活性的主要原因。MBC/OC和MBN/ON能较好地指示土壤微生物活性的变化,MBC/OC凋落层总体以灌丛和连香树人工林最高,油松和华山松人工林最低;而土壤中MBC/OC连香树人工最高,华山松人工林最低。说明以油松和华山松为主的人工造林替代乡土阔叶灌丛造成土壤C、N等养分严重匮乏,微生物活性低下是影响其养分周转的主要原因。 3. 从各次生植被凋落物产生看,凋落物年归还量最大的为华山松人工林(5.1×103 kg ha-1),其次为落叶松人工林(4.8×103 kg ha-1),阔叶灌丛林地凋落物产生总量(4.4×103 kg ha-1)略大于油松人工林(4.2×103 kg ha-1),最小的为连香树人工林(3.6×103 kg ha-1);叶是凋落物的主体,落叶类树种月动态表现为单峰型,高峰主要在10-11月,如落叶松、连香树和灌丛林;常绿的松类月动态不明显,各月基本相同,最为明显地为油松林,华山松人工林略有二个小峰,分别出现在11月和5月。落叶阔叶灌丛的凋落物分解速率大于常绿针叶林,如油松和华山松。结合凋落物的产生量和分解速率,不同树种人工林替代次生阔叶灌丛后,人工油松和华山松林枯落物总贮量和厚度明显大于落叶松人工林、灌丛林和连香树人工林,说明以油松和华山松为主的人工造林替代乡土阔叶灌丛延缓了有机物向土壤的顺利归还,不利于土壤C、N等养分循环。 4. 通过控制地面凋落物和地下根系输入有机物对土壤碳、氮的影响研究发现,(1) 单独去除根系以及根系与地面凋落物同时去除处理1年后对表层(0-10cm)土壤WDOC均没有显著影响,而土壤WDON显著增加,油松人工林土壤微生物生物量C、N显著降低,人工落叶松林没有显著差异,说明油松人工林土壤微生物活性对地下碳输入的依赖大于其它次生植被,而落叶松土壤微生物活性对地下碳输入依赖性较小;去除地面凋落物,明显降低了落叶松人工林土壤WDOC,华山松和连香树土壤WDON均较对照显著减少,油松人工林土壤微生物量C较对照显著减少;双倍增加地面凋落物处理对土壤微生物生物量、WDOC和WDON没有明显地增加,相反,连香树、华山松和油松人工林土壤WDON较对照减少。说明油松人工林微生物活性不仅依赖于地下碳输入,而且对地上有机物输入的依赖性也较大;连香树、落叶松和华山松人工林土壤微生物生物量并没有因地面凋落物的去除减少可能与土壤总有机碳含量及活性均较高有关,而双倍增加地面凋落物反而降低了土壤微生物生物量,说明凋落物覆盖后改变了土壤微气候。 5. 碳矿化累积量与有机碳含量和活性有机碳含量之间存在显著地正相关关系。凋落物碳累积矿化量、矿化速率以连香树最高,油松和华山松人工林次之,落叶阔叶灌丛低于常绿针叶纯林,导致其差异的主要原因可能为凋落物产生的时间动态模式不一样,致使凋落物起始分解时间不一致。而土壤层有机碳矿化速率和矿化量以阔叶落叶灌丛和连香树最高,油松和华山松人工土壤最低,再次证实利用针叶纯林恢复植被阻碍了有机质周转与循环。 6. 凋落物累积矿化量与C/N值呈显著地相关关系,并随着温度的升高而明显增加,而土壤累积矿化量与C/N值没有显著相关关系,说明土壤有机碳质量(C/N)对温度的响应不十分明显。通过双指数模型对不同温度下碳矿化过程进行模拟和计算出活性有机碳与惰性有机碳比例,发现温度升高促进了惰性有机碳向活性有机碳的转化,增加了活性有机碳含量,说明温度升高可促进次生植被凋落物与土壤有机质的分解,进而可影响到林地碳源/汇关系的变化。 综上,通过对不同人工替代次生植被凋落物与土壤C、N大小、以及土壤微生物生物量、水溶性C、N等指标动态变化模式研究,结合温度与凋落物数量输入等影响土壤活性C、N因子的综合分析,以油松和华山松人工纯林对山地植被恢复,延缓或阻碍了有机质周转与循环,造成了土壤肥力退化。对现有低效人工纯林改造,应为地面大量有机物分解创造条件。 Although soil microbial biomass, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are a small part of total soil organic carbon and nitrogen, they can directly participate in the process of soil biochemical translation and indicate the fine changes before changes of soil total organic carbon and nitrogen occur. So, they are good indexes to indicate soil restoration condition during the process of vegetation rehabilitation. There are large areas of secondary vegetations which substitute for indigenous shrubs in the eastern fringe of Qinghai-Tibet Plateau. However, it is not well known that the ecological effect and process after substitution by different secondary plantations. Based on comparison of soil organic and nitrogen contents in litter layer and soil under different secondary vegetations in upper reaches of Minjiang River, soil microbial biomass, DOC and DON in litter layer and soil were investigated in order to analyze the seasonal dynamic. Combining the effects of temperature, litter input and root exclusion on soil microbial biomass, DOC and DON, we also aim to understand the reason and mechanism of difference in soil carbon and nitrogen contents among different secondary vegetations. The study would contribute to comprehensively understanding C and N cycling processes and provide optimal control and sustainable technology of low-effect plantations in these regions. The results are as follows: (1) Organic carbon and nitrogen in litter layers and soil under different substitution plantations were investigated. The results showed that contents of soil organic carbon and nitrogen were lower in P. tabulaeformis (PT) and P. armandi Franch(PA) than those in native broad-leaf shrub and broad-leaf plantation. The low quality (C/N) of litter in PT and PA plantations caused carbon and nitrogen returning to soil difficultly. Seasonal dynamic of soil microbial carbon (MBC),-nitrogen (MBN),-phosphor (MBP), and WDOC and WDON showed similar pattern, which had the highest values in autumn and the lowest values in winter. (2) WDOC and WDON in litter layers and soil under PT and PA plantations were significantly lower than those in native broad-leaf shrub and Cercidiphyllum japonicum Sieb. et Zucc.(CJ). Soil MBC and MBN were also the lowest, while there were no significant differences among deciduous vegetations, i.e. native broad-leaf shrub, CJ and Larix kaempferi Lamb.(LK) plantation. The results suggested that difference in quantity and quality of available substance was main reason that affected the activity of microbe in soil and litter layer. MBC/OC and MBN/ON were good indexes to indicate the change of soil microbial activity. MBC/OC of litter had the highest value under native broad-leaf shrub and CJ plantation, and had the lowest value in PT and PA plantations, while MBC/OC of soil was the highest under CJ plantation, and was the lowest in PT and PA plantations. These results indicated that PT and PA plantations substituting for native broad-leaf shrub caused deficit of carbon and nitrogen in soil, low microbial activity was a main reason influencing the cycling and turnover of carbon and nitrogen in soil. (3) The annual litter fall production, composition, seasonal dynamic and decomposition of five typical secondary stands in upper reaches of Minjiang River were studied in this paper. The annual litter productions were: PA (5.1×103 kg ha-1), LK(4.8×103 kg ha-1), native broad-leaf shrub (4.4×103 kg ha-1), PT(4.2×103 kg ha-1),CJ(3.6×103 kg ha-1). The litter production of leaves in five secondary vegetations occupied a higher percentage in the annual total litter production than those of other components. The litterfall was mostly producted in the cool and dry period (October-November) for deciduous vegetations and relatively equably producted in every season for evergreen coniferous vegetations. The decomposition rate of leaf litter in the broad-leaf stand was higher than those in evergreen coniferous stand. Combined with annual litter fall production and decomposition rate of leaf litter, we found that stock and depth of litter layer were significantly larger in PT and PA plantations than those in native broad-leaf shrub, LK and CJ plantations. The results confirmed that PT and PA plantations substituting for native broad-leaf shrub delayed organic matter returning to soil and hindered cycling of carbon and nitrogen again. (4) We explored plant litter removal, double litter addition, root trenching, and combining root trenching and litter removal treatments to examine the effects of above- and belowground carbon inputs on soil microbial biomass, WDOC and WDON in four secondary plantations. During the experimental period from June 2007 to July 2008, 1 year after initiation of the treatments, WDOC in soil did not vary in root trenching, and combining root trenching and litter removal treatments, while WDON in soil significantly increased compared with CK treatment. Root trenching reduced soil MBC and MBN in PT plantation, while MBC and MBN in soil did not vary in LK plantation. The rasults implied that soil microbial activity was more dependent on belowground carbon input in PT plantation than those in other secondary plantations, on the contrary, soil microbial activity in LK plantation was not dependent on belowground carbon input. Plant litter removal significantly decreased soil WDOC in LK plantation, decreased WDON in PA and CJ plantations, and also significantly reduced soil MBC in PT plantation. However, double litter addition did not increase soil microbial biomass, WDOC and WDON, on the contrary, soil WDON in CJ, PA and PT plantations were decreased. These suggested that soil microbial activity was not only dependent on belowground carbon input, but also on aboveground organic material input. Double litter addition could change the microclimate and result in the decrease of soil microbial activity in CJ, PA and PT plantations. (5) We measured carbon mineralization in a 107 days incubation experiment in 5℃,15℃ and 25℃. Carbon cumulative mineralization was positively correlated with organic matter and labile organic carbon in litter layer and soil. Cumulative carbon mineralization and mineralization rate of litter layers in PT and PA plantations were higher than that in native broad-leaf shrub. This difference between native broad-leaf shrub and coniferous plantations in cumulative carbon mineralization and mineralization rate of litter layers could be attributed to the initiating time of decomposition due to the difference in seasonal dynamic of litter fall production between two types of secondary plantations. However, cumulative carbon mineralization and mineralization rate in soil were the highest in native broad-leaf shrub and CJ plantation, and were the lowest in PT and PA plantations. This also confirmed that PT and PA plantations substituting for native broad-leaf shrub hindered the cycling and turnover of organic matter again. (6) Carbon cumulative mineralization was positively correlated with C/N in litter layer and increased with temperature increasing, while carbon cumulative mineralization was not correlated with C/N in soil. This indicated that soil organic matter quality (C/N) was insensitive to temperature. Applying bi-exponential model, we computed the percent of labile and stable carbon in different temperature incubation and found that temperature increasing would accelerate the transform from stable carbon to labile carbon and increase the percentage of labile organic carbon. This illuminated that temperature incraesing could facilitate the decomposition of litter and soil organic matter in secondary vegetations and hence affect the relationship between carbon source and sink.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

辐射传输研究是贯穿森林生态系统的纽带,太阳辐射为植物的生长发育提供光合能量、适宜的环境温度以及发育信息。一方面,气候变化使到达地面辐射能的质和量发生变化,影响到植被的生长发育,改变森林的结构,而森林结构的变化又会影响林冠内辐射能的分配和质量,这些变化会进一步影响到林下土壤温度,改变森林根系活性以及土壤营养转化的效率;连锁反应的结果有可能会使森林生态系统的生产力发生变化,改变碳素和氮素源库的调节方向,从而反馈影响地球气候系统。另一方面,人类作为生态系统的成员,必然需要森林生态系统为其提供更多的原材料和更好的生态服务功能,如何实现这些目标,就需要人类适度调整干预方式和频度,达到预期的目的。本文在建立适合于川西亚高山森林的叶面积测量技术、光照辐射模型和土壤温度变化模型的基础上,对川西亚高山地带森林生态系统的辐射传输特征进行了分析,并从森林结构的角度探讨了林分内的辐射分布以及对土壤温度的影响。主要成果如下: 1. 提出了一种照相法测量叶面积的方法。通过对摆放在平面上的叶片照相,利用投影变化,把非正射图像转化为正射图像,然后经过计算机图像处理得到每一片叶片的面积、周长、长度、宽度等信息。这种方法可使用户以任意方向和距离拍摄处于平面上的叶片,能同时处理大量的叶片,适于野外离体或活体叶片测量。叶片面积分辨率可调,分辨率可以与常用的激光叶面积仪相近甚至更高,而且叶片图像可以存档查询。 2. 提出一种模拟林内光照变化的模型。利用林冠半球照片,记录视点以上半球内的林冠构件空间分布,作为林冠子模型;天空辐射子模型采用国际照明委员会(CIE)的标准晴天和阴天以及插值模型。该模型能够模拟林下某一位点处的实时光斑变化。 3. 提出一种土壤温度变化模型。把土壤视为具有容量和阻力性质的结构,利用电阻和电容器件构建土壤能量分布模型。外界太阳辐射能经过植被以及其它一些能量分配器后进入土壤,其中有一部分转化为土壤势能,即土壤温度。土壤温度的变化类似于电池的充放电过程。在已知模型参数的情况下,可以从太阳辐射计算土壤温度的变化。在模型参数未知的情况下,通过输入和输出值推算模型的参数,而模型参数中的时间常数与土壤组成和含水量有关,这样就可以知道土壤水分的变化情况。 4. 从王朗亚高山森林典型样地林分结构的测量获得林地三维结构图、树冠形态、叶面积密度等参数,这些参数输入到Brunner (1998)开发的tRAYci 模型中计算出一段时间内林分任意位置处的光照值。与林下辐射计测量值以及半球照片计算结果的比较,该模型基本上能够满足对林分光环境了解的要求。 5. 从川西亚高山森林生产力的角度,探讨了森林生产力研究的方法以及川西地区的研究历史和成果,发现了其中的一些规律和问题,特别是在叶面积测量上,还没有使用标准的叶面积指数定义。综合来看,川西地区针叶林叶面积指数(单位土地面积上植物冠层总叶面积的一半) 应在4-5 之间。降雨丰富的华西雨屏带是川西地区森林生产力最高的地区,而向西北森林生产力逐渐降低。川西地区云冷杉林森林生产力平均约为600 gDM m-2 a-1,但是根据辐射能计算的潜在生产力则达到1800 gDM m-2 a-1。实际与潜在森林生产力的巨大差异说明其它因子对生产力的影响。 6. 王朗亚高山3 个典型森林林分中,白桦林样地(BF) 林下草本以糙野青茅、牛至、紫菀等喜阳性物种为主,林下透光度较高;冷杉林样地(FF) 林下透光度最低,以喜阴性物种水金凤、蟹甲草、囊瓣芹等为主;而云杉林样地(SF)林分林龄最大,林下透光度介于冷杉林和白桦林之间,草本层仍然以喜阴性物种东方草莓、紫花碎米芥、酢浆草等为主。冷杉林和云杉林的灌木层也很丰富,卫矛属、五加属、茶藨子属、忍冬属植物很丰富,而在白桦林则以栒摘要子属、榛子属、鹅耳枥属等植物为主。藓类植物在云杉林中最丰富,并且形成毯状层,其它两个林分则很稀少。3 个样地林分结构与林下光环境有很强的相关性,从光环境特征可以在一定程度上推测林分的结构。各样地单纯从乔木层材积推算的NPP 排列顺序为BF>FF>SF,与林下辐射透射率和林分年龄的顺序相同,暗示辐射对群落演替过程的驱动作用。 7. 用半球照相法测得BF、FF 和SF 3 个样地的有效叶面积指数以SF 样地最高,BF 最低。如果考虑针叶树叶片在小枝上的丛聚分布,利用北方针叶林的数值进行校正,则SF 样地LAI 显著增加(达到89%),其它样地的LAI 基本不变甚至有所下降。校正后的数值与文献中地面测量的结果较相近,说明在使用半球照相法测量川西亚高山针叶林LAI 时必须加以校正。 8. 在3 个样地中,白桦、岷江冷杉和方枝柏种群为丛聚分布,紫果云杉在FF和SF 样地中基本上为随机分布。3 个物种出现丛聚分布的最短距离约为2m,在最短距离以内则为随机分布。最短距离可能与树冠大小有关,种子传播特征以及对光照的需求状况可能是造成这种分布格局类型的原因。 Radiative transfer plays a key role in forest ecosystems. Solar radiation providesenergy for photosynthesis, appropriate ambient temperature and development informationfor plants. However, quality and quantity of radiation reaching land surface are affected byweather and subsequently influence the growth and development of plants, which in turnchanges the budget of radiation in forest. Soil temperature changes with the variation ofradiation under forest canopy and influences the activity of roots and rate of nutrientturnover. Thus, any changes of radiation will induce chain reactions in the entireecosystem and display in the value of net primary productivity which will possibly shiftthe relationship between carbon source and sink at local or regional scale and feed back tothe global climate system. On the other hand, as a component of ecosystems, humanbeings of course need to demand more materials and better service from ecosystems. Forthese purpose, man must adapt their pattern and frequency of interference to ecosystems.This paper aims to research on the canopy structure, the radiation distribution and theirinfluence on soil temperature from the process of radiative transfer in subalpine forestecosystem of western Sichuan. The main results are: 1 Present a new photogrammetric method for leaf area. The main idea is to convertnon-vertically taken images of planar leaves to orthoimages through projectivetransformation. The resultant images are used to get leaf morphological parametersthrough image processing. This method enables users to take photos at almost anyorientation and distance if only the leaves are placed on same plane, and to processlarge quantity of leaves in a short time, which is suitable for field measurement. Theresolution of leaf area is adjustable to fit for special requirement. 2 A model using hemispherical photos combining with solar tracks and radiation courseis provided to simulate light variation in forest. The hemispherical photos of canopyrecord the real spatial distribution of each element of plants viewed from a point. Skyradiance is simulated with CIE standard clear sky or cloudy sky model. This modelcan be used to simulate real time light variation under canopy. 3 Present a soil temperature model. Soil could be regarded as a body of resistor andcapacitor. Some of the budget of solar radiation in soil body is transformed into soilpotential energy, the soil temperature. Variation of soil temperature is driven by solarradiation, vegetation, soil properties, etc. This model has two parameters, one of whichis time constant and is related to soil water content. The inversed model can be used tosimulate the variation of soil water. 4 By using model tRAYci developed by Brunner (1998), the 3-D distribution of light inthree subalpine forest stands of Wanglang Nature Reserve has been simulated andvalidated with value of radiometers in these stands. This model can basically satisfythe need for understanding light regimes of these stands. 5 Present some principles and questions of NPP (net primary of productivity) researchesin western Sichuan. The standard leaf area index (LAI) defined by Chen and Black(1997) has not been used in this region. Total leaf area and projected leaf area indexare still used in NPP researches which may differ around 1-fold in magnitude. Thestandard LAI which is a half of total leaf area above unit land area should be between4 and 5 for typical subalpine coniferous forest of western Sichuan concluded fromliteratures. The maximum forest NPP occurs in West China rain belt and decreasesnorthwestwards. Average NPP of spruce-fir forest in western Sichuan is about600gDM m-2 a-1, which is below the potential NPP of 1800gDM m-2 a-1 based onmeasured radiation in this region. The significant difference between potential and realNPP suggests that other factors influence the growth of stands. 6 In the three subalpine forest stands of Wanglang Nature Reserve, herbage layer ofAbstractbirch stand (BF) with age of 40 is dominated by heliophytes of Deyeuxia scabrescens,Origanum vulgare, Aster tongoloa etc.. However, both of the other two stands aredominated by shade tolerent species, such as Impatiens noli-tangere, Impatiensdicentra, Cacalia deltophylla and Pternopetalum tanakae etc. in fir stand (FF) withage of 180 and Fragaria orientalis, Cardamine tangutorum and Oxalis corniculata etc.in spruce stand (SF) with age of 330. Shrub species in the latter two stands arerelatively rich, typical dominant genera being Euonymus, Acanthopanax, Ribes andLonicera. Birch stand has relatively sparse shrubs dominated by genera of Cotoneaster,Corylus and Carpinus. Mosses are significant only in spruce stand. The canopystructure controls the light regime of stand, which influence the composition of herblayers beneath the canopy. This light regime-community structure relationship can beused to infer the herb community from canopy structure. The NPP derived from timbervolume of arbor layer of the three stands decreases from BF to SF, which is in thesame order of transmitted total radiation under canopy and age of these stands,suggesting the driving effect of radiation in the succession of community. 7 The highest effective LAI of the three stands obtained by hemispherical photos is inplot SF and lowest in plot BF. After rectification of the clumping effect of leaves onshoot, the real LAI in plot SF increases significantly (89%) and approximate to theaverage LAI of coniferous forest in western Sichuan. Therefore, the LAI obtainedfrom hemispherical photos needs rectification for clumping effect. 8 Spatial distribution pattern for Betula platyphylla, Abies faxoniana and Sabinasaltuaria is clumpy, but Picea purpurea almost random in plot FF and SF. The shortestdistance for clumpy distribution for Betula platyphylla and Sabina saltuaria is 1.5m,and 2m for Abies faxoniana. And random pattern for these trees is exhibited within thisrange which almost coincides with the diameter of crown. Seed dispersalcharacteristics and light requirement may be the reason for different spatial pattern.