890 resultados para Solving-problem algorithms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor functional volume (FV) and its mean activity concentration (mAC) are the quantities derived from positron emission tomography (PET). These quantities are used for estimating radiation dose for a therapy, evaluating the progression of a disease and also use it as a prognostic indicator for predicting outcome. PET images have low resolution, high noise and affected by partial volume effect (PVE). Manually segmenting each tumor is very cumbersome and very hard to reproduce. To solve the above problem I developed an algorithm, called iterative deconvolution thresholding segmentation (IDTS) algorithm; the algorithm segment the tumor, measures the FV, correct for the PVE and calculates mAC. The algorithm corrects for the PVE without the need to estimate camera’s point spread function (PSF); also does not require optimizing for a specific camera. My algorithm was tested in physical phantom studies, where hollow spheres (0.5-16 ml) were used to represent tumors with a homogeneous activity distribution. It was also tested on irregular shaped tumors with a heterogeneous activity profile which were acquired using physical and simulated phantom. The physical phantom studies were performed with different signal to background ratios (SBR) and with different acquisition times (1-5 min). The algorithm was applied on ten clinical data where the results were compared with manual segmentation and fixed percentage thresholding method called T50 and T60 in which 50% and 60% of the maximum intensity respectively is used as threshold. The average error in FV and mAC calculation was 30% and -35% for 0.5 ml tumor. The average error FV and mAC calculation were ~5% for 16 ml tumor. The overall FV error was ~10% for heterogeneous tumors in physical and simulated phantom data. The FV and mAC error for clinical image compared to manual segmentation was around -17% and 15% respectively. In summary my algorithm has potential to be applied on data acquired from different cameras as its not dependent on knowing the camera’s PSF. The algorithm can also improve dose estimation and treatment planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes and investigates a metaheuristic tabu search algorithm (TSA) that generates optimal or near optimal solutions sequences for the feedback length minimization problem (FLMP) associated to a design structure matrix (DSM). The FLMP is a non-linear combinatorial optimization problem, belonging to the NP-hard class, and therefore finding an exact optimal solution is very hard and time consuming, especially on medium and large problem instances. First, we introduce the subject and provide a review of the related literature and problem definitions. Using the tabu search method (TSM) paradigm, this paper presents a new tabu search algorithm that generates optimal or sub-optimal solutions for the feedback length minimization problem, using two different neighborhoods based on swaps of two activities and shifting an activity to a different position. Furthermore, this paper includes numerical results for analyzing the performance of the proposed TSA and for fixing the proper values of its parameters. Then we compare our results on benchmarked problems with those already published in the literature. We conclude that the proposed tabu search algorithm is very promising because it outperforms the existing methods, and because no other tabu search method for the FLMP is reported in the literature. The proposed tabu search algorithm applied to the process layer of the multidimensional design structure matrices proves to be a key optimization method for an optimal product development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a paper by Biro et al. [7], a novel twist on guarding in art galleries is introduced. A beacon is a fixed point with an attraction pull that can move points within the polygon. Points move greedily to monotonically decrease their Euclidean distance to the beacon by moving straight towards the beacon or sliding on the edges of the polygon. The beacon attracts a point if the point eventually reaches the beacon. Unlike most variations of the art gallery problem, the beacon attraction has the intriguing property of being asymmetric, leading to separate definitions of attraction region and inverse attraction region. The attraction region of a beacon is the set of points that it attracts. For a given point in the polygon, the inverse attraction region is the set of beacon locations that can attract the point. We first study the characteristics of beacon attraction. We consider the quality of a "successful" beacon attraction and provide an upper bound of $\sqrt{2}$ on the ratio between the length of the beacon trajectory and the length of the geodesic distance in a simple polygon. In addition, we provide an example of a polygon with holes in which this ratio is unbounded. Next we consider the problem of computing the shortest beacon watchtower in a polygonal terrain and present an $O(n \log n)$ time algorithm to solve this problem. In doing this, we introduce $O(n \log n)$ time algorithms to compute the beacon kernel and the inverse beacon kernel in a monotone polygon. We also prove that $\Omega(n \log n)$ time is a lower bound for computing the beacon kernel of a monotone polygon. Finally, we study the inverse attraction region of a point in a simple polygon. We present algorithms to efficiently compute the inverse attraction region of a point for simple, monotone, and terrain polygons with respective time complexities $O(n^2)$, $O(n \log n)$ and $O(n)$. We show that the inverse attraction region of a point in a simple polygon has linear complexity and the problem of computing the inverse attraction region has a lower bound of $\Omega(n \log n)$ in monotone polygons and consequently in simple polygons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expressing the properties of the exit material as a function of the potential difference and mass flux (scraping rate) and solving the mechanical problem in order to obtain a velocity field to be fed into multi-physics numerical platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solving a complex Constraint Satisfaction Problem (CSP) is a computationally hard task which may require a considerable amount of time. Parallelism has been applied successfully to the job and there are already many applications capable of harnessing the parallel power of modern CPUs to speed up the solving process. Current Graphics Processing Units (GPUs), containing from a few hundred to a few thousand cores, possess a level of parallelism that surpasses that of CPUs and there are much less applications capable of solving CSPs on GPUs, leaving space for further improvement. This paper describes work in progress in the solving of CSPs on GPUs, CPUs and other devices, such as Intel Many Integrated Cores (MICs), in parallel. It presents the gains obtained when applying more devices to solve some problems and the main challenges that must be faced when using devices with as different architectures as CPUs and GPUs, with a greater focus on how to effectively achieve good load balancing between such heterogeneous devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aims to study the application of Genetic Algorithms in anaerobic digestion modeling, in particular when using dynamical models. Along the work, different types of bioreactors are shown, such as batch, semi-batch and continuous, as well as their mathematical modeling. The work intendeds to estimate the parameter values of two biological reaction model. For that, simulated results, where only one output variable, the produced biogas, is known, are fitted to the model results. For this reason, the problems associated with reverse optimization are studied, using some graphics that provide clues to the sensitivity and identifiability associated with the problem. Particular solutions obtained by the identifiability analysis using GENSSI and DAISY softwares are also presented. Finally, the optimization is performed using genetic algorithms. During this optimization the need to improve the convergence of genetic algorithms was felt. This need has led to the development of an adaptation of the genetic algorithms, which we called Neighbored Genetic Algorithms (NGA1 and NGA2). In order to understand if this new approach overcomes the Basic Genetic Algorithms (BGA) and achieves the proposed goals, a study of 100 full optimization runs for each situation was further developed. Results show that NGA1 and NGA2 are statistically better than BGA. However, because it was not possible to obtain consistent results, the Nealder-Mead method was used, where the initial guesses were the estimated results from GA; Algoritmos Evolucionários para a Modelação de Bioreactores Resumo: Neste trabalho procura-se estudar os algoritmos genéticos com aplicação na modelação da digestão anaeróbia e, em particular, quando se utilizam modelos dinâmicos. Ao longo do mesmo, são apresentados diferentes tipos de bioreactores, como os batch, semi-batch e contínuos, bem como a modelação matemática dos mesmos. Neste trabalho procurou-se estimar o valor dos parâmetros que constam num modelo de digestão anaeróbia para o ajustar a uma situação simulada onde apenas se conhece uma variável de output, o biogas produzido. São ainda estudados os problemas associados à optimização inversa com recurso a alguns gráficos que fornecem pistas sobre a sensibilidade e identifiacabilidade associadas ao problema da modelação da digestão anaeróbia. São ainda apresentadas soluções particulares de idenficabilidade obtidas através dos softwares GENSSI e DAISY. Finalmente é realizada a optimização do modelo com recurso aos algoritmos genéticos. No decorrer dessa optimização sentiu-se a necessidade de melhorar a convergência e, portanto, desenvolveu-se ainda uma adaptação dos algoritmos genéticos a que se deu o nome de Neighboured Genetic Algorithms (NGA1 e NGA2). No sentido de se compreender se as adaptações permitiam superar os algoritmos genéticos básicos e atingir as metas propostas, foi ainda desenvolvido um estudo em que o processo de optimização foi realizado 100 vezes para cada um dos métodos, o que permitiu concluir, estatisticamente, que os BGA foram superados pelos NGA1 e NGA2. Ainda assim, porque não foi possivel obter consistência nos resultados, foi usado o método de Nealder-Mead utilizado como estimativa inicial os resultados obtidos pelos algoritmos genéticos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radars are expected to become the main sensors in various civilian applications, especially for autonomous driving. Their success is mainly due to the availability of low cost integrated devices, equipped with compact antenna arrays, and computationally efficient signal processing techniques. This thesis focuses on the study and the development of different deterministic and learning based techniques for colocated multiple-input multiple-output (MIMO) radars. In particular, after providing an overview on the architecture of these devices, the problem of detecting and estimating multiple targets in stepped frequency continuous wave (SFCW) MIMO radar systems is investigated and different deterministic techniques solving it are illustrated. Moreover, novel solutions, based on an approximate maximum likelihood approach, are developed. The accuracy achieved by all the considered algorithms is assessed on the basis of the raw data acquired from low power wideband radar devices. The results demonstrate that the developed algorithms achieve reasonable accuracies, but at the price of different computational efforts. Another important technical problem investigated in this thesis concerns the exploitation of machine learning and deep learning techniques in the field of colocated MIMO radars. In this thesis, after providing a comprehensive overview of the machine learning and deep learning techniques currently being considered for use in MIMO radar systems, their performance in two different applications is assessed on the basis of synthetically generated and experimental datasets acquired through a commercial frequency modulated continuous wave (FMCW) MIMO radar. Finally, the application of colocated MIMO radars to autonomous driving in smart agriculture is illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The world of Computational Biology and Bioinformatics presently integrates many different expertise, including computer science and electronic engineering. A major aim in Data Science is the development and tuning of specific computational approaches to interpret the complexity of Biology. Molecular biologists and medical doctors heavily rely on an interdisciplinary expert capable of understanding the biological background to apply algorithms for finding optimal solutions to their problems. With this problem-solving orientation, I was involved in two basic research fields: Cancer Genomics and Enzyme Proteomics. For this reason, what I developed and implemented can be considered a general effort to help data analysis both in Cancer Genomics and in Enzyme Proteomics, focusing on enzymes which catalyse all the biochemical reactions in cells. Specifically, as to Cancer Genomics I contributed to the characterization of intratumoral immune microenvironment in gastrointestinal stromal tumours (GISTs) correlating immune cell population levels with tumour subtypes. I was involved in the setup of strategies for the evaluation and standardization of different approaches for fusion transcript detection in sarcomas that can be applied in routine diagnostic. This was part of a coordinated effort of the Sarcoma working group of "Alleanza Contro il Cancro". As to Enzyme Proteomics, I generated a derived database collecting all the human proteins and enzymes which are known to be associated to genetic disease. I curated the data search in freely available databases such as PDB, UniProt, Humsavar, Clinvar and I was responsible of searching, updating, and handling the information content, and computing statistics. I also developed a web server, BENZ, which allows researchers to annotate an enzyme sequence with the corresponding Enzyme Commission number, the important feature fully describing the catalysed reaction. More to this, I greatly contributed to the characterization of the enzyme-genetic disease association, for a better classification of the metabolic genetic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inverse problems are at the core of many challenging applications. Variational and learning models provide estimated solutions of inverse problems as the outcome of specific reconstruction maps. In the variational approach, the result of the reconstruction map is the solution of a regularized minimization problem encoding information on the acquisition process and prior knowledge on the solution. In the learning approach, the reconstruction map is a parametric function whose parameters are identified by solving a minimization problem depending on a large set of data. In this thesis, we go beyond this apparent dichotomy between variational and learning models and we show they can be harmoniously merged in unified hybrid frameworks preserving their main advantages. We develop several highly efficient methods based on both these model-driven and data-driven strategies, for which we provide a detailed convergence analysis. The arising algorithms are applied to solve inverse problems involving images and time series. For each task, we show the proposed schemes improve the performances of many other existing methods in terms of both computational burden and quality of the solution. In the first part, we focus on gradient-based regularized variational models which are shown to be effective for segmentation purposes and thermal and medical image enhancement. We consider gradient sparsity-promoting regularized models for which we develop different strategies to estimate the regularization strength. Furthermore, we introduce a novel gradient-based Plug-and-Play convergent scheme considering a deep learning based denoiser trained on the gradient domain. In the second part, we address the tasks of natural image deblurring, image and video super resolution microscopy and positioning time series prediction, through deep learning based methods. We boost the performances of supervised, such as trained convolutional and recurrent networks, and unsupervised deep learning strategies, such as Deep Image Prior, by penalizing the losses with handcrafted regularization terms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with efficient solution of optimization problems of practical interest. The first part of the thesis deals with bin packing problems. The bin packing problem (BPP) is one of the oldest and most fundamental combinatorial optimiza- tion problems. The bin packing problem and its generalizations arise often in real-world ap- plications, from manufacturing industry, logistics and transportation of goods, and scheduling. After an introductory chapter, I will present two applications of two of the most natural extensions of the bin packing: Chapter 2 will be dedicated to an application of bin packing in two dimension to a problem of scheduling a set of computational tasks on a computer cluster, while Chapter 3 deals with the generalization of BPP in three dimensions that arise frequently in logistic and transportation, often com- plemented with additional constraints on the placement of items and characteristics of the solution, like, for example, guarantees on the stability of the items, to avoid potential damage to the transported goods, on the distribution of the total weight of the bins, and on compatibility with loading and unloading operations. The second part of the thesis, and in particular Chapter 4 considers the Trans- mission Expansion Problem (TEP), where an electrical transmission grid must be expanded so as to satisfy future energy demand at the minimum cost, while main- taining some guarantees of robustness to potential line failures. These problems are gaining importance in a world where a shift towards renewable energy can impose a significant geographical reallocation of generation capacities, resulting in the ne- cessity of expanding current power transmission grids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates the legal, ethical, technical, and psychological issues of general data processing and artificial intelligence practices and the explainability of AI systems. It consists of two main parts. In the initial section, we provide a comprehensive overview of the big data processing ecosystem and the main challenges we face today. We then evaluate the GDPR’s data privacy framework in the European Union. The Trustworthy AI Framework proposed by the EU’s High-Level Expert Group on AI (AI HLEG) is examined in detail. The ethical principles for the foundation and realization of Trustworthy AI are analyzed along with the assessment list prepared by the AI HLEG. Then, we list the main big data challenges the European researchers and institutions identified and provide a literature review on the technical and organizational measures to address these challenges. A quantitative analysis is conducted on the identified big data challenges and the measures to address them, which leads to practical recommendations for better data processing and AI practices in the EU. In the subsequent part, we concentrate on the explainability of AI systems. We clarify the terminology and list the goals aimed at the explainability of AI systems. We identify the reasons for the explainability-accuracy trade-off and how we can address it. We conduct a comparative cognitive analysis between human reasoning and machine-generated explanations with the aim of understanding how explainable AI can contribute to human reasoning. We then focus on the technical and legal responses to remedy the explainability problem. In this part, GDPR’s right to explanation framework and safeguards are analyzed in-depth with their contribution to the realization of Trustworthy AI. Then, we analyze the explanation techniques applicable at different stages of machine learning and propose several recommendations in chronological order to develop GDPR-compliant and Trustworthy XAI systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes the analysis of tracking algorithms for point objects and extended targets particle filter on a radar application problem. Through simulations, the number of particles, the process and measurement noise of particle filter have been optimized. Four different scenarios have been considered in this work: point object with linear trajectory, point object with non-linear trajectory, extended object with linear trajectory, extended object with non-linear trajectory. The extended target has been modelled as an ellipse parametrized by the minor and major axes, the orientation angle, and the center coordinates (5 parameters overall).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11) neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA) tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.