998 resultados para Solar Window
Resumo:
The flow of energy through the solar atmosphere and the heating of the Sun's outer regions are still not understood. Here, we report the detection of oscillatory phenomena associated with a large bright-point group that is 430,000 square kilometers in area and located near the solar disk center. Wavelet analysis reveals full-width half-maximum oscillations with periodicities ranging from 126 to 700 seconds originating above the bright point and significance levels exceeding 99%. These oscillations, 2.6 kilometers per second in amplitude, are coupled with chromospheric line-of-sight Doppler velocities with an average blue shift of 23 kilometers per second. A lack of cospatial intensity oscillations and transversal displacements rules out the presence of magneto-acoustic wave modes. The oscillations are a signature of Alfvén waves produced by a torsional twist of ±22 degrees. A phase shift of 180 degrees across the diameter of the bright point suggests that these torsional Alfvén oscillations are induced globally throughout the entire brightening. The energy flux associated with this wave mode is sufficient to heat the solar corona.
Resumo:
A new type of near-infrared emitting rare-earth complex has been synthesised, consisting of three bis(perfluoroalkylsulfonyl)imide ligands and one 1,10-phenanthroline molecule. The chelate rings formed by the rare-earth ion and the bidentate ligands do not contain any carbon atoms and can hence be considered as 'inorganic' chelate rings. The absence of C-H stretching vibration modes in the first coordination sphere of the rare-earth ion and the presence of a light-harvesting moiety (1,10-phenanthroline) bound to the rare-earth ion result in a complex that can be efficiently excited and exhibits intense near-infrared luminescence. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Accurate chronologies are essential for linking palaeoclimate archives. Carbon-14 wiggle-match dating was used to produce an accurate chronology for part of an early Holocene peat sequence from the Borchert (The Netherlands). Following the Younger Dryas-Preboreal transition, two climatic shifts could be inferred. Around 11 400 cal. yr BP the expansion of birch (Betula) forest was interrupted by a dry continental phase with dominantly open grassland vegetation, coeval with the PBO (Preboreal Oscillation), as observed in the GRIP ice core. At 11 250 cal. yr BP a sudden shift to a humid climate occurred. This second change appears to be contemporaneous with: (i) a sharp increase of atmospheric C-14; (ii) a temporary decline of atmospheric CO2; and (iii) an increase in the GRIP Be-10 flux. The close correspondence with excursions of cosmogenic nuclides points to a decline in solar activity, which may have forced the changes in climate and vegetation at around 11 250 cal. yr BP. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Closely spaced sequences of accelerator mass spectrometer (AMS) C-14 dates of peat deposits display century-scale wiggles which can be fitted to the radiocarbon calibration curve. By wiggle-matching such sequences, high-precision calendar age chronologies can be generated which show that changes in mire surface wetness during the Bronze Age/Iron Age transition (c. 850 cal. BC) and the 'Little Ice Age' (Wolf, Sporer, Maunder and Dalton Minima) occurred during periods of suddenly increasing atmospheric concentration of C-14. Replicate evidence from peat-based proxy climate indicators in northwest Europe suggest these changes in climate may have been driven by temporary declines of solar activity. Carbon-accumulation rates of two raised peat bogs in the UK and Denmark record low values during the 'Little Ice Age' which reflects reduced primary productivity of the peat-forming vegetation during these periods of climatic deterioration.
Resumo:
Fluctuations in Holocene atmospheric radiocarbon concentrations have been shown to be due to variations in solar activity. Analyses of both Be-10 and C-14 nuclides confirm that production-rate changes during the Holocene were largely modulated by solar activity. Analyses of peat samples from two intact European ombrotrophic bogs show that climatic deteriorations during the 'Little Ice Age' are associated with transitions to increasing atmospheric C-14 content due to greater C-14 production. Both ombrotrophic mires, which are positioned c. 800 km apart, register reactions to globally recorded C-14 fluctuations between AD 1449 and 1464 and an almost identical reaction between AD 1601 and 1604.
Resumo:
Poem
Resumo:
This paper discusses the monitoring of complex nonlinear and time-varying processes. Kernel principal component analysis (KPCA) has gained significant attention as a monitoring tool for nonlinear systems in recent years but relies on a fixed model that cannot be employed for time-varying systems. The contribution of this article is the development of a numerically efficient and memory saving moving window KPCA (MWKPCA) monitoring approach. The proposed technique incorporates an up- and downdating procedure to adapt (i) the data mean and covariance matrix in the feature space and (ii) approximates the eigenvalues and eigenvectors of the Gram matrix. The article shows that the proposed MWKPCA algorithm has a computation complexity of O(N2), whilst batch techniques, e.g. the Lanczos method, are of O(N3). Including the adaptation of the number of retained components and an l-step ahead application of the MWKPCA monitoring model, the paper finally demonstrates the utility of the proposed technique using a simulated nonlinear time-varying system and recorded data from an industrial distillation column.
Resumo:
The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen's University Belfast. The system is available on the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k x 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 -aEuro parts per thousand 15 e s(-1) pixel(-1)), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, or 200 Hz when the CCD is windowed. Combining multiple cameras and fast readout rates, ROSA will accumulate approximately 12 TB of data per 8 hours observing. Following successful commissioning during August 2008, ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution.
Resumo:
Magnetic bright points (MBPs) are among the smallest observable objects on the solar photosphere. A combination of G-band observations and numerical simulations is used to determine their area distribution. An automatic detection algorithm, employing one-dimensional intensity profiling, is utilized to identify these structures in the observed and simulated data sets. Both distributions peak at an area of approximate to 45,000 km(2), with a sharp decrease toward smaller areas. The distributions conform with log-normal statistics, which suggests that flux fragmentation dominates over flux convergence. Radiative magneto-convection simulations indicate an independence in the MBP area distribution for differing magnetic flux densities. The most commonly occurring bright point size corresponds to the typical width of inter-granular lanes.