990 resultados para Soil mapping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

These last twenty years have seen the development of an abundant literature on the influence of soil macrofauna on soil structure. Amongst these organisms, earthworms, termites and ants are considered to play a key role in regulating the physical, chemical and microbiological properties of soils. Due to these influential impacts, soil ecologists consider these soil macro-invertebrates as `soil engineers' and their diversity and abundance are nowadays considered as relevant bioindicators of soil quality by many scientists and policy makers. Despite this abundant literature, the soil engineering concept remains a `preach to the choir' and bioturbation only perceived as important for soil ecologists. We discussed in this article the main mechanisms by which soil engineers impact soil structure and proposed to classify soil engineers with respect to their capacity to produce biostructures and modify them. We underlined the lack of studies considering biostructure dynamics and presented recent techniques in this purpose. We discussed why soil engineering concept is mainly considered by soil ecologists and call for a better collaboration between soil ecologists and soil physicists. Finally, we summarized main challenges and questions that need to be answered to integrate soil engineers activities in soil structure studies. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforcing soil with fibers is a useful method for improving the strength and settlement response of soil. The soil and fiber characteristics and their interaction are some of the major factors affecting the strength of reinforced soil. The fibers are usually randomly distributed in the soil, and their orientation has a significant effect on the behavior of the reinforced soil. In the paper, a study of the effect of anisotropic distribution of fibers on the stress-strain response is presented. Based on the concept of the modified Cam clay model, an analytical model was formulated for the fiber-reinforced soil, and the effect of fiber orientation on the stress-strain behavior of soil was studied in detail. The results show that, as the inclination of fibers with the horizontal plane increased, the contribution of fibers in improving the strength of fiber-reinforced soil decreased. The effect of fibers is maximum when they are in the direction of extension, and vice versa. (C) 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compost, vermicompost and biochar amendments are thought to improve soil quality and plant yield. However, little is known about their long-term impact on crop yield and the environment in tropical agro-ecosystems. In this study we investigated the effect of organic amendments (buffalo manure, compost and verrnicompost) and biochar (applied alone or with vermicompost) on plant yield, soil fertility, soil erosion and water dynamics in a degraded Acrisol in Vietnam. Maize growth and yield, as well as weed growth, were examined for three years in terrestrial mesocosms under natural rainfall. Maize yield and growth showed high inter-annual variability depending on the organic amendment. Vermicompost improved maize growth and yield but its effect was rather small and was only significant when water availability was limited (year 2). This suggests that vermicompost could be a promising substrate for improving the resistance of agrosystems to water stress. When the vermicompost biochar mixture was applied, further growth and yield improvements were recorded in some cases. When applied alone, biochar had a positive influence on maize yield and growth, thus confirming its interest for improving long-term soil productivity. All organic amendments reduced water runoff, soil detachment and NH4+ and NO3- transfer to water. These effects were more significant with vermicompost than with buffalo manure and compost, highlighting that the beneficial influence of vermicompost is not limited to its influence on plant yield. In addition, this study showed for the first time that the combination of vermicompost and biochar may not only improve plant productivity but also reduce the negative impact of agriculture on water quality. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demixing behavior, transient morphologies and mechanism of phase separation in PS/PVME blends were greatly altered in the presence of a very low concentration of rod-like particles (multiwall carbon nanotubes, MWNTs). This phenomenon is due to the specific interaction of one of the phases (PVME) with the anisotropic MWNTs, which creates a heterogeneous environment in the blend. This specific interaction alters the chain dynamics in the interfacial region as against the bulk. A comprehensive analysis using isochronal temperature sweep was performed to understand the demixing temperature in the blends. The evolution of phase morphology as a function of time and temperature was assessed by polarizing optical microscopy (POM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The addition of MWNTs increased the rheological demixing temperature and the spinodal temperature in almost all the compositions. The intriguing transient morphologies were mapped, which varied from nucleation and growth to coalescence-induced viscoelastic phase separation (C-VPS) in PVME-rich blends, to spinodal decomposition in the near-critical compositions, to transient gel-induced VPS (T-VPS) in the PS-rich compositions. Mapping of the morphology development displayed two types of fracture mechanisms: ductile fracture for near-critical compositions and brittle fracture for off-critical composition. The change in the phase separation mechanism in the presence of MWNTs was due to the variation in dynamic asymmetry brought about by these anisotropic particles. All these observations were correlated by POM, SEM and AFM studies. The length of the cooperatively rearranging region (CRR), as evaluated using modulated differential scanning calorimetry (MDSC) measurements, was found to be composition-independent. The observed variation of effective glass transition of PVME (low T-g component) on blending with PS (high Tg component) and by the addition of MWNTs accounts for the dynamic heterogeneity introduced by MWNTs in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungus-growing termites are involved in many ecological processes and play a central role in influencing soil dynamics in the tropics. The physical and chemical properties of their nest structures have been largely described; however less information is available concerning the relatively temporary structures made above-ground to access food items and protect the foraging space (the soil `sheetings'). This study investigated whether the soil physical and chemical properties of these constructions are constant or if they vary depending on the type of food they cover. Soil samples and soil sheetings were collected in a forest in India, from leaves on the ground (LEAF), fallen branches (WOOD), and vertical soil sheetings covering the bark of trees (TREE). In this environment, termite diversity was dominated by Odontotermes species, and especially Odontotermes feae and Odontotermes obesus. However, there was no clear niche differentiation and, for example, O. feae termites were found on all the materials. Compared with the putative parent soil (control), TREE sheetings showed the greatest (and most significant) differences (higher clay content and smaller clay particle sizes, lower C and N content and smaller delta C-13 and delta N-15), while LEAF sheetings were the least modified, though still significantly different than the control soil. We suggest that the termite diversity is a less important driver of potential soil modification than sheeting diversity. Further, there is evidence that construction properties are adapted to their prospective life-span, with relatively long-lasting structures being most different from the parent soil. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study presents an algorithm to retrieve surface Soil Moisture (SM) from multi-temporal Synthetic Aperture Radar (SAR) data. The developed algorithm is based on the Cumulative Density Function (CDF) transformation of multi-temporal RADARSAT-2 backscatter coefficient (BC) to obtain relative SM values, and then converts relative SM values into absolute SM values using soil information. The algorithm is tested in a semi-arid tropical region in South India using 30 satellite images of RADARSAT-2, SMOS L2 SM products, and 1262 SM field measurements in 50 plots spanning over 4 years. The validation with the field data showed the ability of the developed algorithm to retrieve SM with RMSE ranging from 0.02 to 0.06 m(3)/m(3) for the majority of plots. Comparison with the SMOS SM showed a good temporal behaviour with RMSE of approximately 0.05 m(3)/m(3) and a correlation coefficient of approximately 0.9. The developed model is compared and found to be better than the change detection and delta index model. The approach does not require calibration of any parameter to obtain relative SM and hence can easily be extended to any region having time series of SAR data available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We found that Pd(II) ion (M) and the smallest 120 bidentate donor pyrimidine (L-a) self-assemble into a mononuclear M(L-a)(4) complex (1a) instead of the expected smallest M-12(L-a)(24) molecular ball (1), presumably due to the weak coordination nature of the pyrimidine. To construct such a pyrimidine bridged nanoball, we employed a new donor tris(4-(pyrimidin-5-yl)phenyl)amine (L); which upon selective complexation with Pd(II) ions resulted in the formation of a pregnant M24L24 molecular nanoball (2) consisting of a pyrimidine-bridged Pd-12 baby-ball supported by a Pd-12 larger mother-ball. The formation of the baby-ball was not successful without the support of the mother-ball. Thus, we created an example of a self-assembly where the inner baby-ball resembling to the predicted M-12(L-a)(24) ball (1) was incarcerated by the giant outer mother-ball by means of geometrical constraints. Facile conversion of the pregnant ball 2 to a smaller M-12(L-b)(24) ball 3 with dipyridyl donor was achieved in a single step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of gypsum on the strength of lime treated soils after a long period of interaction is not well understood yet. The present study is performed to scrutinize the physical and strength behavior of lime treated soil with varying gypsum content. Lime and gypsum contents varying from 0 to 6% are considered in the present study for curing periods up to 28 days. To understand the long-term effects, the work has been extended up to 365 days, particularly with the use of 6% lime content and varying gypsum contents. Atterberg's limits turned out to be marginally affected by cation exchange. Unconfined compressive strength behavior of lime treated soil varies considerably with gypsum content and curing period. However, trivial alteration in strength is observed in the soil treated with lower lime content (up to 4%) and gypsum content up to 6%. On the contrary, strength of soil-6% lime mixture with addition of varying gypsum content shows acceleration in early strength at 14 days curing period. However, the strength at 28 days of curing declines but regains afterwards for 90 days. The trend at longer curing period for 180 and 365 days is, however, not unique but varies with gypsum contents. An attempt has been made to explain these changes on the basis of the form of gypsum, formation and conversion of reacted compounds (CASHH, CASH, MI and Ettringite). The proposed explanations were supported by detailed characterization through thermal analysis, XRD, SEM and EDAX studies of soil-lime-gypsum mixtures. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Termite mounds are conspicuous features in many tropical ecosystems. Their shape and soil physicochemical properties have been suggested to result from the termites ecological need to control the temperature and humidity within their nests and protect themselves from predators. This study aimed to determine the influence of the parent soil properties on the shape and soil physical and chemical properties of termite mounds. Termite mounds built by the fungus-growing termite species Odontotermes obesus were compared in two forests with different soil properties (Ferralsol or Luvisol) in Southern India. Our findings confirm that soil properties influence the physicochemical characteristics of mound material and may affect the shape, but these impacts are mostly independent of the size of the mounds (i.e., the age of the colonies). Mound walls were more enriched in clay and impoverished in C and N in the Luvisol than the Ferralsol. However, their shape was more complex in the Ferralsol than the Luvisol, suggesting a possible link between the clay content in soil and the shape of termite mounds. The results also suggest that clay becomes enriched in O. obesus mound walls through a more passive process rather than solely by particle selection, and that termite mound shape results from the soil properties rather than the ecological needs of termites. In conclusion, although ecologists have mainly focused upon the influence of termite ecological needs on their nest properties, this study highlights the need for a better understanding about the role of the soil pedological properties and, as a consequence, how these properties drive the establishment and survival of termites in tropical ecosystems. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the influence of soil properties on the density and shape of epigeous fungus-growing termite nests in a dry deciduous forest in Karnataka, India. In this environment, Odontotermes obesus produces cathedral shaped mounds. Their density, shape (height and volume) and soil physicochemical properties were analyzed in ferralsol and vertisol environments. No significant difference was observed in O. obesus mound density (n = 2.7 mound ha(-1) on average in the vertisol and ferralsol areas). This study also showed that O. obesus has a limited effect on soil physical properties. No differences in soil particle size, pH, or the C:N ratio and base saturation were measured whereas the C and N contents were reduced and CEC was higher in termite nest soils in both environments. Clay mineralogical composition was also measured, and showed the presence of higher amounts of smectite clays in termite nest soils, which thus explained the increasing CEC despite the reduced C and N content. However, the main difference was the shape of the termite mounds. The degradation of the nests created a hillock of eroded soil at the base of termite mounds in the vertisol while only a thin layer of eroded soil was observed in the ferralsol. The increased degradation of termite mounds in the vertisol is explained by the presence of smectites (2:1 swelling clays), which confer macroscopic swelling and shrinking characteristics to the soil. Soil shrinkage during the dry season leads to the formation of deep cracks in the termite mounds that allow rain to rapidly penetrate inside the mound wall and then breakdown unstable aggregates. In conclusion, it appears that despite a similar abundance, termite mound properties depend to a large extent on the soil properties of their environments. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the development and testing of an integrated low-power and low-cost dual-probe heat-pulse (DPHP) soil-moisture sensor in view of the electrical power consumed and affordability in developing countries. A DPHP sensor has two probes: a heater and a temperature sensor probe spaced 3 mm apart from the heater probe. Supply voltage of 3.3V is given to the heater-coil having resistance of 33 Omega power consumption of 330 mW, which is among the lowest in this category of sensors. The heater probe is 40 mm long with 2 mm diameter and hence is stiff enough to be inserted into the soil. The parametric finite element simulation study was performed to ensure that the maximum temperature rise is between 1 degrees C and 5 degrees C for wet and dry soils, respectively. The discrepancy between the simulation and experiment is less than 3.2%. The sensor was validated with white clay and tested with red soil samples to detect volumetric water-content ranging from 0% to 30%. The sensor element is integrated with low-power electronics for amplifying the output from thermocouple sensor and TelosB mote for wireless communication. A 3.7V lithium ion battery with capacity of 1150 mAh is used to power the system. The battery is charged by a 6V and 300 mA solar cell array. Readings were taken in 30 min intervals. The life-time of DPHP sensor node is around 3.6 days. The sensor, encased in 30 mm x 20 mm x 10 mm sized box, and integrated with electronics was tested independently in two separate laboratories for validating as well as investigating the dependence of the measurement of soil-moisture on the density of the soil. The difference in the readings while repeating the experiments was found out to be less than 0.01%. Furthermore, the effect of ambient temperature on the measurement of soil-moisture is studied experimentally and computationally. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the important role of supraglacial debris in ablation, knowledge of debris thickness on Himalayan glaciers is sparse. A recently developed method based on reanalysis data and thermal band satellite imagery has proved to be potentially suitable for debris thickness estimation without the need for detailed field data. In this study, we further develop the method and discuss possibilities and limitations arising from its application to a glacier in the Himalaya with scarce in situ data. Surface temperature patterns are consistent for 13 scenes of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat 7 imagery and correlate well with incoming shortwave radiation and air temperature. We use an energy-balance approach to subtract these radiation or air temperature effects, in order to estimate debris thickness patterns as a function of surface temperature. Both incoming shortwave and longwave radiation are estimated with reasonable accuracy when applying parameterizations and reanalysis data. However, the model likely underestimates debris thickness, probably due to incorrect representation of vertical debris temperature profiles, the rate of heat storage and turbulent sensible heat flux. Moreover, the uncertainty of the result was found to increase significantly with thicker debris, a promising result since ablation is enhanced by thin debris of 1-2 cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomolecular recognition underlying drug-target interactions is determined by both binding affinity and specificity. Whilst, quantification of binding efficacy is possible, determining specificity remains a challenge, as it requires affinity data for multiple targets with the same ligand dataset. Thus, understanding the interaction space by mapping the target space to model its complementary chemical space through computational techniques are desirable. In this study, active site architecture of FabD drug target in two apicomplexan parasites viz. Plasmodium falciparum (PfFabD) and Toxoplasma gondii (TgFabD) is explored, followed by consensus docking calculations and identification of fifteen best hit compounds, most of which are found to be derivatives of natural products. Subsequently, machine learning techniques were applied on molecular descriptors of six FabD homologs and sixty ligands to induce distinct multivariate partial-least square models. The biological space of FabD mapped by the various chemical entities explain their interaction space in general. It also highlights the selective variations in FabD of apicomplexan parasites with that of the host. Furthermore, chemometric models revealed the principal chemical scaffolds in PfFabD and TgFabD as pyrrolidines and imidazoles, respectively, which render target specificity and improve binding affinity in combination with other functional descriptors conducive for the design and optimization of the leads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt has been made to bring out the influence on strength and volume change behavior of fabric changes and new cementitious compound formation in a soil upon addition of various lime contents and with curing periods. The effects of changes in fabric of treatment with various lime contents (0, 2,4 and 6%) and with curing periods (0, 7, 14 and 28 days) have been evaluated by one-dimensional consolidation tests, in terms of void ratio changes and compressibility. The strength of soil treated with different lime contents with curing periods up to 28 days, and with the optimum lime content of 6% up to one year has been determined by unconfined compression tests. Comparison of effects of lime on the strength and volume change behavior of the soil brings out that the formation of flocculated fabric and cation exchange significantly reduces the compressibility of soil but marginally increases the strength. Cementation of soil particles and filling with cementitious compounds of the voids of flocculated fabric in the soil marginally reduces the compressibility but significantly increases the strength. Thus, the mechanism of volume change behavior of soil treated with lower lime content at short curing periods is distinctly different from that of the soil treated with optimum lime content at longer curing periods. This is consistent with the increase in the permeability caused by the addition from 2 to 4% lime and the decrease following the addition of 6% lime. Changes consistent with mechanical behavior have been determined by scanning electron microscope, X-ray diffraction and thermal analyses, energy dispersive X-ray spectrometer and pH value in microstructure, mineralogy, chemical composition and alkalinity, respectively. (C) 2015 Published by Elsevier B.V.