994 resultados para Software eutils-search


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este proyecto consiste en el desarrollo de una aplicación informática que permite gestionar de forma automatizada y consistente los datos requeridos para la actividad docente de un profesor universitario. La aplicación permite gestionar: plan docente, asignaturas, horario docente, calendario de exámenes y proyectos final de carrera. Todas estas opciones tienen las funciones de, agregar, buscar, modificar y eliminar datos. Además tiene otras opciones como calendario docente y webs, cuya finalidad será consultar, de forma directa, páginas web de interés docente. Finalmente, la opción material docente tendrá como finalidad, crear, modificar y eliminar ficheros de diferente formato (word, excel, powerpoint, pdf) asociados a las asignaturas registradas en la aplicación. La aplicación se ha implementado en el sistema operativo Windows en el lenguaje de programación Java. Los datos utilizados se almacenan en la base de datos MySql Workbench. Para las validaciones de entrada de datos se ha utilizado JavaScript y JQuery. El diseño de la interfaz se ha llevado a cabo con Java Server Pages, Html, Css y framework Struts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The book presents the state of the art in machine learning algorithms (artificial neural networks of different architectures, support vector machines, etc.) as applied to the classification and mapping of spatially distributed environmental data. Basic geostatistical algorithms are presented as well. New trends in machine learning and their application to spatial data are given, and real case studies based on environmental and pollution data are carried out. The book provides a CD-ROM with the Machine Learning Office software, including sample sets of data, that will allow both students and researchers to put the concepts rapidly to practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La formació de traductors implica l´ús de procediments i eines que permetin els estudiants familiaritzar-se amb contextos professionals. El software lliure especialitzat inclou eines de qualitat professional i procediments accessibles per a les institucions acadèmiques i els estudiants a distància que treballen a casa seva. Els projectes reals que utilitzen software lliure i traducció col·laborativa (crowdsourcing) constitueixen recursos indispensables en la formació de traductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Research in epistasis or gene-gene interaction detection for human complex traits has grown over the last few years. It has been marked by promising methodological developments, improved translation efforts of statistical epistasis to biological epistasis and attempts to integrate different omics information sources into the epistasis screening to enhance power. The quest for gene-gene interactions poses severe multiple-testing problems. In this context, the maxT algorithm is one technique to control the false-positive rate. However, the memory needed by this algorithm rises linearly with the amount of hypothesis tests. Gene-gene interaction studies will require a memory proportional to the squared number of SNPs. A genome-wide epistasis search would therefore require terabytes of memory. Hence, cache problems are likely to occur, increasing the computation time. In this work we present a new version of maxT, requiring an amount of memory independent from the number of genetic effects to be investigated. This algorithm was implemented in C++ in our epistasis screening software MBMDR-3.0.3. We evaluate the new implementation in terms of memory efficiency and speed using simulated data. The software is illustrated on real-life data for Crohn’s disease. Results: In the case of a binary (affected/unaffected) trait, the parallel workflow of MBMDR-3.0.3 analyzes all gene-gene interactions with a dataset of 100,000 SNPs typed on 1000 individuals within 4 days and 9 hours, using 999 permutations of the trait to assess statistical significance, on a cluster composed of 10 blades, containing each four Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz. In the case of a continuous trait, a similar run takes 9 days. Our program found 14 SNP-SNP interactions with a multiple-testing corrected p-value of less than 0.05 on real-life Crohn’s disease (CD) data. Conclusions: Our software is the first implementation of the MB-MDR methodology able to solve large-scale SNP-SNP interactions problems within a few days, without using much memory, while adequately controlling the type I error rates. A new implementation to reach genome-wide epistasis screening is under construction. In the context of Crohn’s disease, MBMDR-3.0.3 could identify epistasis involving regions that are well known in the field and could be explained from a biological point of view. This demonstrates the power of our software to find relevant phenotype-genotype higher-order associations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Debido a la necesidad de diferenciarse y hacer frente a la competencia, las empresas han apostado por desarrollar operaciones que den valor al cliente, por eso muchas de ellas han visto en las herramientas lean la oportunidad para mejorar sus operaciones. Esta mejora implica la reducción de dinero, personas, equipos grandes, inventario y espacio, con dos objetivos: eliminar despilfarro y reducir la variabilidad. Para conseguir los objetivos estratégicos de la empresa es imprescindible qué éstos estén alineados con los planes de la gerencia a nivel medio y a su vez con el trabajo realizado por los empleados para asegurar que cada persona está alineada en la misma dirección y al mismo tiempo. Ésta es la filosofía de la planificación estratégica. Por ello uno de los objetivos de este proyecto será el desarrollar una herramienta que facilite la exposición de los objetivos de la empresa y la comunicación de los mismos a todos los niveles de la organización para a partir de ellos y tomando como referencia la necesidad de reducir inventarios en la cadena de suministro se realizará un estudio de la producción de un componente de control del aerogenerador para conseguir nivelarla y reducir su inventario de producto terminado. Los objetivos particulares en este apartado serán reducir el inventario en un 28%, nivelar la producción reduciendo la variabilidad del 31% al 24%, mantener un stock máximo de 24 unidades garantizando el suministro ante una demanda variable, incrementar la rotación del inventario en un 10% y establecer un plan de acción para reducir el lead time entre un 40-50%. Todo ello será posible gracias a la realización del mapa de valor presente y futuro para eliminar desperdicios y crear un flujo continuo y el cálculo de un supermercado que mantenga el stock en un nivel óptimo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la era digital actual, Internet forma parte de nuestras vidas, y ha aportado cambios a lasociedad globalizada. Algunos de estos cambios nos permiten nuevas formas de relacionarnos y degestionar el conocimiento, dando sentido al término que hoy entendemos como sociedad-red.Por eso, en el entorno que nos envuelve existen continuamente acciones colaborativas globales quefomentan la comunicación y se comparte información de diversos tipos, con la finalidad deaprender y mantenerse constantemente informado. Específicamente, los centros educativos no sequedan al margen ya que requiere preparar estudiantes para esta sociedad.Estos cambios en la sociedad presentan grandes desafíos para el centro educativo, que nopermiten ser afrontados solamente desde el aula. Los centros requieren adaptarse a un modelocompatible con la sociedad-red, y por ello, se sugieren un modelo centro-red, que presente unaestructura de una organización compatible con la era en el que estamos inmersos.Las redes de colaboración en los centros permite intercambiar información y aportar valor a laeducación con el objetivo de la mejora educativa. En este sentido, los centros educativos debendisponer de características que permitan ser flexibles, adaptarse a los agentes y organizaciones quele envuelven. Pero la estructura actual de un centro educativo es rígida y por tanto esta evoluciónrepresenta uno de los mayores desafíos para el sistema educativo.En esta linea, en los centros de Formación Profesional existe una tendencia hacia modeloscolaborativos con el tejido empresarial, entre otros agentes, y es en este punto donde este proyectopretende centrar el foco de la investigación. Con más exactitud, en la creación de una red decolaboración con el agente que el centro educativo seleccione.Específicamente las TIC forman un papel esencial, y se deben poner al servicio del problemaque apuntábamos para ayudar a solventarlo. En este sentido, es adecuado un diseño del artefactocon Software Libre que tiene múltiples beneficios para este objetivo, pero que destacamos el que ami parecer es el más importante; la vinculación con la filosofía de compartir el conocimiento, quegarantiza la simbiosis con la red colaborativa y es por esta razón que el tema de la investigación esrelevante para el centro educativo.Tal y como se mencionaba previamente, las TIC pueden ayudar a fomentar la red colaborativa,pero no sólo el artefacto TIC generado en este proyecto debe cumplir características como laflexibilidad, también es crítico que el centro educativo y los agentes de la red interioricen la culturacolaborativa en sus acciones con la implicación y compromiso que se requiere. Pero como podemosPágina 6Universitat Oberta de Catalunya Trabajo Final de Máster - Software Libreimaginar, ese cambio de cultura, no es una tarea sencilla y presenta problemas. Para mitigarlos yfomentar la cultura en red, se requieren procesos específicos que permitan incorporarla en la medidade lo posible. Para ello, la combinación de la innovación sistémica y el diseño de la investigación eneducación resultan metodologías apropiadas.Por eso, investigaremos durante este proceso cómo las redes de colaboración y el SoftwareLibre permiten adaptar el centro al entorno, cómo pueden ayudar al centro a potenciar la FormaciónProfesional y garantizar la durabilidad de las acciones, con el objetivo que perdure el conocimientoy la propia red de colaboración para una mejora educativa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Blood pressure is known to aggregate in families. Yet, heritability estimates are population-specific and no Swiss data have been published so far. Moreover, little is known on the heritability of the white-coat effect. We investigated the heritability of various blood pressure (BP) traits in a Swiss population-based sample. Methods: SKIPOGH (Swiss Kidney Project on Genes in Hypertension) is a family-based multi-centre (Lausanne, Bern, Geneva) cross-sectional study that examines the role of genes in determining BP levels. Office and 24-hour ambulatory BP were measured using validated devices (A&D UM-101 and Diasys Integra). We estimated the heritability of systolic BP (SBP), diastolic BP (DBP), heart rate (HR), pulse pressure (PP), proportional white-coat effect (i.e. [office BP-mean ambulatory daytime BP]/mean ambulatory daytime BP), and nocturnal BP dipping (difference between mean ambulatory daytime and night-time BP) using a maximum likelihood method implemented in the SAGE software. Analyses were adjusted for age, sex, body mass index (BMI), and study centre. Analyses involving PP were additionally adjusted for DBP. Results: The 517 men and 579 women included in this analysis had a mean (}SD) age of 46.8 (17.8) and 47.8 (17.1) years and a mean BMI of 26.0 (4.2) and 24.2 (4.6) kg/m2, respectively. Heritability estimates (}SE) for office SBP, DBP, HR, and PP were 0.20}0.07, 0.20}0.07, 0.39}0.08, and 0.16}0.07 (all P<0.01). Heritability estimates for 24-hour ambulatory SBP, DBP, HR, and PP were, respectively, 0.39}0.07, 0.30}.08, 0.19}0.09, and 0.25}0.08 (all P<0.05). The heritability of the white-coat effect was 0.29}0.07 for SBP and 0.31}0.07 for DBP (both P<0.001). The heritability of nocturnal BP dipping was 0.15}0.08 for SBP and 0.22}0.07 for DBP (both P<0.05). Conclusions: We found that the white-coat effect is significantly heritable. Our findings show that BP traits are moderately heritable in a multi-centric study in Switzerland, in line with previous population-based studies, justifying the ongoing search for genetic determinants in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este proyecto busca analizar, diseñar e implementar una nueva solución de telefonía para el Centro Social de Oficiales de la Policía Nacional contemplando la posibilidad de optar por una migración hacia un sistema VoIP bajo software libre con Asterisk. En consecuencia, se deben evaluar las tecnologías actuales buscando proveer nuevas funcionalidades en el servicio telefónico generando bajos costos en su implementación, funcionamiento y mantenimiento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This manual describes how to use the Iowa Bridge Backwater software. It also documents the methods and equations used for the calculations. The main body describes how to use the software and the appendices cover technical aspects. The Bridge Backwater software performs 5 main tasks: Design Discharge Estimation; Stream Rating Curves; Floodway Encroachment; Bridge Backwater; and Bridge Scour. The intent of this program is to provide a simplified method for analysis of bridge backwater for rural structures located in areas with low flood damage potential. The software is written in Microsoft Visual Basic 6.0. It will run under Windows 95 or newer versions (i.e. Windows 98, NT, 2000, XP and later).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la actualidad las tecnologías de la información son utilizadas en todos los ámbitos empresariales. Desde sistemas de gestión (ERPs) pasando por la gestión documental, el análisis de información con sistema de Bussines Intelligence, pudiendo incluso convertirse en toda una nueva plataforma para proveer a las empresas de nuevos canales de venta, como es el caso deInternet.De la necesidad inicial de nuestro cliente en comenzar a expandirse por un nuevo canal de venta para poder llegar a nuevos mercados y diversificar sus clientes se inicia la motivación de este TFC.Dadas las características actuales de las tecnologías de la información e internet, estas conforman un binomio perfecto para definir este TFC que trata todos los aspectos necesarios para llegar a obtener un producto final como es un portal web inmobiliario adaptado a los requisitos demandados por los usuarios actuales de Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigaremos cómo las redes de colaboración y el softwarelibre permiten adaptar el centro educativo al entorno, cómo pueden ayudar al centro a potenciar la formación profesional y garantizar la durabilidad de las acciones, con el objetivo que perdure el conocimiento y la propia red de colaboración para una mejora educativa.