980 resultados para Smithsonian-Chrysler East African expedition, 1926.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.
Resumo:
On Vermilion Sea Expedition two research vessels among which the R/V Spencer F. Baird conducted a geological and geophysical exploration of the Gulf of California from February to May, 1959. Support was obtained from the Office of Naval Research and the Bureau of Ships of the U. S. Navy and from a grant of the American Petroleum Institute. Study of the canyons was one feature of the first part of the expedition. Submarine canyon studies were directed by Francis P. Shepard, Professor of Submarine Geology, aboard the research vessel Spencer F. Baird. The expedition found that the narrow channel between Angel de la Guarda Island, toward the head of the Gulf, and the peninsula is scoured almost free of sediments by strong currents. On the other side of Angel de la Guarda Island, between it and the mainland, one of the dredge hauls brought up a manganese nodule. It came from a depth of approximately 1500 feet. This is the shallowest water in which the nodules have been found. Studies have been under way some time on the feasibility of mining such nodules from the sea floor. They contain cobalt, nickel, copper and other valuable metals. (also in, Scripps Institution of Oceanography Vermilion Sea Expedition to the Gulf of California, http://library.ucsd.edu/dc/object/bb34484017)
Resumo:
Carbon dioxide, ammonia, and reactive phosphate in the interstitial water of three sediment cores of the West African continental margin result from oxidation of sedimentary organic matter by bacterial sulfate reduction. The proposed model is a modification of one initially suggested by Richards (1965) for processes in anoxic waters: (CH2O)106 (NH3)8 (H3PO4) (0.7-0.2) + 53 SO4**2- =106 CO2 + 106 H20 + 8 NH3 + (0.7 - 0.2) H3PO4 + 53 S**2- The amount of reduced interstitial sulfate, the carbon-to-nitrogen-to-phosphorus atomic ratio of the sedimentary organic matter, as well as small amounts of carbon dioxide, which precipitated as interstitial calcium carbonate, are included in the general oxidation-reduction reaction. Preferential loss of nitrogen and phosphorus from organic matter close to the surface was recorded in both the interstitial water and sediment composition. It appeared that in deeper sections of the core organic carbon compounds were oxidized which were probably in an even lower oxidation state than that indicated by the proposed model. An estimated 2 % of the amount of organic matter still present was oxidized after it became incorporated into the sediment; whereas sulfide sulfur contents indicate that a much larger percentage (15-20%) seemed to have been subject to bacterial oxidation during the Pleistocene period, when a very thin oxidizing layer on the sediment allowed the above decomposition process to start relatively early favoured by almost fresh organic matter, and by almost unrestricted exchange of sulfate with the overlying water.
Resumo:
Paleomagnetic analyses of the natural remanent magnetization of >1700 vertically oriented sediment samples from Integrated Ocean Drilling Program (IODP) Holes U1319A, U1320A, U1322B, and U1324B in the northern Gulf of Mexico reveal complex magnetostratographic signals for the Brazos-Trinity and Ursa region carried by detrital iron oxide minerals. Additionally, gyroremanent magnetization was observed to form during alternating-field demagnetization of samples containing an enhanced amount of magnetic iron sulfide minerals. Most characteristic remanent magnetization inclinations are reasonable for the site latitudes. Stable declinations allow for azimuth correction of the formerly unoriented drill cores.
Resumo:
Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bølling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A.
Resumo:
The cores and dredges described in this report were taken on the TETHYS Expedition from June 1960 until July 1960 by the Scripps Institution of Oceanography from the R/V Spencer F. Baird. A total of 124 cores and dredges were recovered and are available at Scripps for sampling and study.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.
Resumo:
The cores described in this report were taken on the WAHINE Expedition in February to March 1965 by the Scripps Institution of Oceanography from the R/V Spencer F. Baird. A total of 54 cores and dredges were recovered and are available at Scripps for sampling and study.
Resumo:
The palaeoenvironmental development of the western Laptev Sea is understood primarily from investigations of exposed cliffs and surface sediment cores from the shelf. In 2005, a core transect was drilled between the Taymyr Peninsula and the Lena Delta, an area that was part of the westernmost region of the non-glaciated Beringian landmass during the late Quaternary. The transect of five cores, one terrestrial and four marine, taken near Cape Mamontov Klyk reached 12 km offshore and 77 m below sea level. A multiproxy approach combined cryolithological, sedimentological, geochronological (14C-AMS, OSL on quartz, IR-OSL on feldspars) and palaeoecological (pollen, diatoms) methods. Our interpretation of the proxies focuses on landscape history and the transition of terrestrial into subsea permafrost. Marine interglacial deposits overlain by relict terrestrial permafrost within the same offshore core were encountered in the western Laptev Sea. Moreover, the marine interglacial deposits lay unexpectedly deep at 64 m below modern sea level 12 km from the current coastline, while no marine deposits were encountered onshore. This implies that the position of the Eemian coastline presumably was similar to today's. The landscape reconstruction suggests Eemian coastal lagoons and thermokarst lakes, followed by Early to Middle Weichselian fluvially dominated terrestrial deposition. During the Late Weichselian, this fluvial landscape was transformed into a poorly drained accumulation plain, characterized by widespread and broad ice-wedge polygons. Finally, the shelf plain was flooded by the sea during the Holocene, resulting in the inundation and degradation of terrestrial permafrost and its transformation into subsea permafrost.