997 resultados para Skin Absorption
Resumo:
Successfully predicting the frequency dispersion of electronic hyperpolarizabilities is an unresolved challenge in materials science and electronic structure theory. We show that the generalized Thomas-Kuhn sum rules, combined with linear absorption data and measured hyperpolarizability at one or two frequencies, may be used to predict the entire frequency-dependent electronic hyperpolarizability spectrum. This treatment includes two- and three-level contributions that arise from the lowest two or three excited electronic state manifolds, enabling us to describe the unusual observed frequency dispersion of the dynamic hyperpolarizability in high oscillator strength M-PZn chromophores, where (porphinato)zinc(II) (PZn) and metal(II)polypyridyl (M) units are connected via an ethyne unit that aligns the high oscillator strength transition dipoles of these components in a head-to-tail arrangement. We show that some of these structures can possess very similar linear absorption spectra yet manifest dramatically different frequency dependent hyperpolarizabilities, because of three-level contributions that result from excited state-to excited state transition dipoles among charge polarized states. Importantly, this approach provides a quantitative scheme to use linear optical absorption spectra and very limited individual hyperpolarizability measurements to predict the entire frequency-dependent nonlinear optical response. Copyright © 2010 American Chemical Society.
Resumo:
We present an analytical method that yields the real and imaginary parts of the refractive index (RI) from low-coherence interferometry measurements, leading to the separation of the scattering and absorption coefficients of turbid samples. The imaginary RI is measured using time-frequency analysis, with the real part obtained by analyzing the nonlinear phase induced by a sample. A derivation relating the real part of the RI to the nonlinear phase term of the signal is presented, along with measurements from scattering and nonscattering samples that exhibit absorption due to hemoglobin.
Resumo:
BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of complicated skin and skin-structure infection (cSSSI). Increasing antimicrobial resistance in cSSSI has led to a need for new safe and effective therapies. Ceftaroline was evaluated as treatment for cSSSI in 2 identical phase 3 clinical trials, the pooled analysis of which is presented here. The primary objective of each trial was to determine the noninferiority of the clinical cure rate achieved with ceftaroline monotherapy, compared with that achieved with vancomycin plus aztreonam combination therapy, in the clinically evaluable (CE) and modified intent-to-treat (MITT) patient populations. METHODS: Adult patients with cSSSI requiring intravenous therapy received ceftaroline (600 mg every 12 h) or vancomycin plus aztreonam (1 g each every 12 h) for 5-14 days. RESULTS: Of 1378 patients enrolled in both trials, 693 received ceftaroline and 685 received vancomycin plus aztreonam. Baseline characteristics of the treatment groups were comparable. Clinical cure rates were similar for ceftaroline and vancomycin plus aztreonam in the CE (91.6% vs 92.7%) and MITT (85.9% vs 85.5%) populations, respectively, as well as in patients infected with MRSA (93.4% vs 94.3%). The rates of adverse events, discontinuations because of an adverse event, serious adverse events, and death also were similar between treatment groups. CONCLUSIONS: Ceftaroline achieved high clinical cure rates, was efficacious against cSSSI caused by MRSA and other common cSSSI pathogens, and was well tolerated, with a safety profile consistent with the cephalosporin class. Ceftaroline has the potential to provide a monotherapy alternative for the treatment of cSSSI. TRIAL REGISTRATION: ClinicalTrials.gov identifiers: NCT00424190 for CANVAS 1 and NCT00423657 for CANVAS 2.
Resumo:
info:eu-repo/semantics/published
Resumo:
The screening and treatment of latent tuberculosis (TB) infection reduces the risk of progression to active disease and is currently recommended for HIV-infected patients. The aim of this study is to evaluate, in a low TB incidence setting, the potential contribution of an interferon-gamma release assay in response to the mycobacterial latency antigen Heparin-Binding Haemagglutinin (HBHA-IGRA), to the detection of Mycobacterium tuberculosis infection in HIV-infected patients.
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
The purpose of the present study was to use attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and target factor analysis (TFA) to investigate the permeation of model drugs and formulation components through Carbosil® membrane and human skin. Diffusion studies of saturated solutions in 50:50 water/ethanol of methyl paraben (MP), ibuprofen (IBU) and caffeine (CF) were performed on Carbosil® membrane. The spectroscopic data were analysed by target factor analysis, and evolution profiles of the signal for each component (i.e. the drug, water, ethanol and membrane) over time were obtained. Results showed that the data were successfully deconvoluted as correlations between factors from the data and reference spectra of the components, were above 0.8 in all cases. Good reproducibility over three runs for the evolution profiles was obtained. From the evolution profiles it was observed that water diffused better through the Carbosil® membrane than ethanol, confirming the hydrophilic properties of the Carbosil® membrane used. IBU diffused slower compared with MP and CF. The evolution profile of CF was very similar to that of water, probably because of the high solubility of CF in water, indicating that both compounds are diffusing concurrently. The second part of the work involved a study of the evolution profiles of the components of a commercial topical gel containing 5% (w/w) of ibuprofen as it permeated through human skin. Although the system was much more complex, data were still successfully deconvoluted and the different components of the formulation identified except for benzyl alcohol which might be attributed to the low concentrations of benzyl alcohol used in topical formulations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the context of trans-dermal drug delivery it is very important to have mechanistic insight into the barrier function of the skin's stratum corneum and the diffusion mechanisms of topically applied drugs. Currently spectroscopic imaging techniques are evolving which enable a spatial examination of various types of samples in a dynamic way. ATR-FTIR imaging opens up the possibility to monitor spatial diffusion profiles across the stratum corneum of a skin sample. Multivariate data analyses methods based on factor analysis are able to provide insight into the large amount of spectroscopically complex and highly overlapping signals generated. Multivariate target factor analysis was used for spectral resolution and local diffusion profiles with time through stratum corneum. A model drug, 4-cyanophenol in polyethylene glycol 600 and water was studied. Results indicate that the average diffusion profiles between spatially different locations show similar profiles despite the heterogeneous nature of the biological sample and the challenging experimental set-up.