951 resultados para Single system image
Resumo:
We study the spectral characteristics of bovine serum albumin (BSA) protein conjugated single-wall carbon nanotubes (SWNTs), and quantify their uptake by macrophages. The binding of BSA onto the SWNT surface is found to change the protein structure and to increase the doping of the nanotubes. The G-band Raman intensity follows a well-defined power law for SWNT concentrations of up to 33 μg ml-1 in aqueous solutions. Subsequently, in vitro experiments demonstrate that incubation of BSA-SWNT complexes with macrophages affects neither the cellular growth nor the cellular viability over multiple cell generations. Using wide spot Raman spectroscopy as a fast, non-destructive method for statistical quantification, we observe that macrophages effectively uptake BSA-SWNT complexes, with the average number of nanotubes internalized per cell remaining relatively constant over consecutive cell generations. The number of internalized SWNTs is found to be ∼30 × 106 SWNTs/cell for a 60 mm-2 seeding density and ∼100 × 10 6 SWNTs/cell for a 200 mm-2 seeding density. Our results show that BSA-functionalized SWNTs are an efficient molecular transport system with low cytotoxicity maintained over multiple cell generations. © 2013 IOP Publishing Ltd.
Resumo:
The extreme sensitivity of Sm/Ba at high temperature in air becomes an obstacle to the fabrication of SmBCO single grains that exhibit stable and reliable superconducting properties. In this research, the superconducting properties of SmBCO single grains fabricated by top seeded melt growth (TSMG) from different batches of commercial SmBa2Cu3O 7-d (Sm-123) precursor powder using different processing atmospheres (air and 0.1% O2 in Ar), different processing methods (isothermal growth and continuous cooling) and different amounts of BaO2 content to suppress Sm/Ba substitution in air have been investigated in an attempt to understand fully the TSMG process for this system. As a result, based on extensive data, a novel and simple, low temperature post-annealing approach is proposed specifically to overcome the sensitivity of Tc to Sm/Ba substitution in order to simplify the fabrication of SmBCO and to increase its reliability with a view to the practical processing of these materials. Initial processing trials have been performed successfully to demonstrate the viability of the novel post-annealing process. © 2013 IOP Publishing Ltd.
Resumo:
High frequency Rayleigh and Sezawa modes propagating in the ZnO/GaAs system capable of operating immersed in liquid helium have been engineered. In the case of the Rayleigh mode, the strong attenuation produced by the liquid is counteracted by the strengthening of the mode induced by the ZnO. However, in the case of the Sezawa modes, the attenuation is strongly reduced taking advantage of the depth profile of their acoustic Poynting vectors, that extend deeper into the layered system, reducing the energy radiated into the fluid. Thus, both tailored modes will be suitable for acoustically-driven single-electron and single-photon devices in ZnO-coated GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2012 IEEE.
Resumo:
Natural odors are usually mixtures; yet, humans and animals can experience them as unitary percepts. Olfaction also enables stimulus categorization and generalization. We studied how these computations are performed with the responses of 168 locust antennal lobe projection neurons (PNs) to varying mixtures of two monomolecular odors, and of 174 PNs and 209 mushroom body Kenyon cells (KCs) to mixtures of up to eight monomolecular odors. Single-PN responses showed strong hypoadditivity and population trajectories clustered by odor concentration and mixture similarity. KC responses were much sparser on average than those of PNs and often signaled the presence of single components in mixtures. Linear classifiers could read out the responses of both populations in single time bins to perform odor identification, categorization, and generalization. Our results suggest that odor representations in the mushroom body may result from competing optimization constraints to facilitate memorization (sparseness) while enabling identification, classification, and generalization.
Resumo:
Natural odors are usually mixtures; yet, humans and animals can experience them as unitary percepts. Olfaction also enables stimulus categorization and generalization. We studied how these computations are performed with the responses of 168 locust antennal lobe projection neurons (PNs) to varying mixtures of two monomolecular odors, and of 174 PNs and 209 mushroom body Kenyon cells (KCs) to mixtures of up to eight monomolecular odors. Single-PN responses showed strong hypoadditivity and population trajectories clustered by odor concentration and mixture similarity. KC responses were much sparser on average than those of PNs and often signaled the presence of single components in mixtures. Linear classifiers could read out the responses of both populations in single time bins to perform odor identification, categorization, and generalization. Our results suggest that odor representations in the mushroom body may result from competing optimization constraints to facilitate memorization (sparseness) while enabling identification, classification, and generalization
Resumo:
Cell biology is characterised by low molecule numbers and coupled stochastic chemical reactions with intrinsic noise permeating and dominating the interactions between molecules. Recent work [9] has shown that in such environments there are hard limits on the accuracy with which molecular populations can be controlled and estimated. These limits are predicated on a continuous diffusion approximation of the target molecule (although the remainder of the system is non-linear and discrete). The principal result of [9] assumes that the birth rate of the signalling species is linearly dependent on the target molecule population size. In this paper, we investigate the situation when the entire system is kept discrete, and arbitrary non-linear coupling is allowed between the target molecule and downstream signalling molecules. In this case it is possible, by relying solely on the event triggered nature of control and signalling reactions, to define non-linear reaction rate modulation schemes that achieve improved performance in certain parameter regimes. These schemes would not appear to be biologically relevant, raising the question of what are an appropriate set of assumptions for obtaining biologically meaningful results. © 2013 EUCA.
Resumo:
PET/SiO2 layers were chemically modified to maintain immobilization of functional single molecules. GFP molecules provide an ideal system due to their stability and intrinsic fluorescence. GFP in vivo biotinylated within its NH2-terminal region and attached on the substrate via the biotinstreptavidin bond was further investigated with confocal microscopy, atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). AFM revealed monolayered donut-like structures representing assemblies of biotinstreptavidinbiotinGFP immobilized onto PET/SiO2 surfaces via mPEG. In particular, regions with an approximate height of 12 nm, which approaches the molecular dimensions of the above complex given by molecular modeling, could be detected. The dimensions of the donut-like structures suggest a close-to-each-other positioning of the GFP molecules - which, however, retain their functionality, as evidenced by confocal microscopy. © 2011 World Scientific Publishing Company.
Resumo:
This paper deals with the case history of a damaged one-span prestressed concrete bridge on a crucial artery near the city of Cagliari (Sardinia), along the sea-side. After being involved in a disastrous flood, attention has arisen on the worrying safety state of the deck, submitted to an intense daily traffic load. Evident signs of this severe condition were the deterioration of the beams concrete and the corrosion, the lack of tension and even the rupture of the prestressing cables. After performing a limited in situ test campaign, consisting of sclerometer, pull out and carbonation depth tests, a first evaluation of the safety of the structure was performed. After collecting the data of dynamic and static load tests as well, a comprehensive analysis have been carried out, also by means of a properly calibrated F.E. model. Finally the retrofitting design is presented, consisting of the reparation and thickening of the concrete cover, providing flexural and shear FRP external reinforcements and an external prestressing system, capable of restoring a satisfactory bearing capacity, according to the current national codes. The intervention has been calibrated by the former F.E. model with respect to transversal effects and influence of local and overall deformation of reinforced elements. © 2012 Taylor & Francis Group.
Resumo:
An approach of rapid hologram generation for the realistic three-dimensional (3-D) image reconstruction based on the angular tiling concept is proposed, using a new graphic rendering approach integrated with a previously developed layer-based method for hologram calculation. A 3-D object is simplified as layered cross-sectional images perpendicular to a chosen viewing direction, and our graphics rendering approach allows the incorporation of clear depth cues, occlusion, and shading in the generated holograms for angular tiling. The combination of these techniques together with parallel computing reduces the computation time of a single-view hologram for a 3-D image of extended graphics array resolution to 176 ms using a single consumer graphics processing unit card. © 2014 SPIE and IS and T.
Resumo:
The infraciliature and myoneme system of Campanella umbellaria were revealed using the protargol impregnation technique. The main characteristics of the infraciliature are the peristomial ciliary rows (haplokinety and polykineties), which make four and a half turns around the peristomial disc before plunging into the infundibulum, and the aboral infraciliature, which is made up of the aboral ciliary wreath (trochal band) and the scopula. The myoneme system is composed of: 1) longitudinal fibers, which include 60-84 (mean 72.3) short longitudinal fibers, 40-56 (mean 45.8) medium-length longitudinal fibers, and numerous long longitudinal fibers; and 2) circular fibers, which include 8-12 (mean 9.3) peristomial ring fibers, linking fibers, support fibers, and peristomial disc fibers. The various fibers in C. umbellaria are interconnected to form a single myoneme system that may act as a cell skeleton as well as providing the mechanism by which the zooid contracts and relaxes. (C) 2004 Wiley-Liss, Inc.
Resumo:
Gloeobacter violaceus, a cyanobacterium lack of thylakoids, is refractory to genetic manipulations because its cells are enveloped by a thick gelatinous sheath and in colonial form. In this study, a large number of single cells were obtained by repeated pumping with a syringe with the gelatinous sheath removed. And an exogenous broad host range plasmid pKT210 was conjugatively transferred into G. violaceus. Analyses with dot-blot hybridization and restriction mapping showed that the exogenous plasmid pKT210 had been introduced into G. violaceus and stably maintained with no alteration in its structure. pKT210 extracted from G. violaceus exconjugants could be transformed into the mcr - mrr - E. coli strain DH10B but not the mcr(+) mrr(+) strain DH5alpha, which suggests that a methylase system may be present in G. violaceus.
Resumo:
New approaches of making single chain Fv antibodies against O-6-methyl-2'-deoxyguanosine (O(6)MdG) have been demonstrated by using the phage antibody display system. Using O(6)MdG as an antigen, 21 positive clones were identified by ELISA from this library, one of which, designated H3, specifically binds to O(6)MdG with high affinity. The H3 scFv antibody has an affinity constant (K-aff) of 5.94 x 10(11)(mol/L)(-1). H3 scFv has been successfully used to detect O-6 MdG in DNA hydrolyses from yeast or E. coli cells treated with a DNA methylating agent. To our knowledge, this is the first report of the selection of a specific scFv against DNA adducts. The results demonstrate the potential applications of the phage display technology for the detection of DNA lesions caused by mutagens and carcinogens.
Resumo:
Transmission properties of data amplitude modulation (AM) and frequency modulation (FM) in radio-over-fiber (RoF) system are studied numerically. The influences of fiber dispersion and nonlinearity on different microwave modulation schemes, including double side band (DSB), single side band (SSB) and optical carrier suppression (OCS), are investigated and compared. The power penalties at the base station (BS) and the eye opening penalties of the recovered data at the end users are both calculated and analyzed. Numerical simulation results reveal that the power penalty of FM can be drastically decreased due to the larger modulation depth it can achieve than that of AM. The local spectrum broadening around subcarrier microwave frequency of AM due to fiber nonlinearity can also be eliminated with FM. It is demonstrated for the first time that the eye openings of the FM recovered data can be controlled by its modulation depths and the coding formats. Negative voltage encoding format was used to further decrease the RF frequency thus increase the fluctuation period considering their inverse relationship.
Resumo:
In this article, the single mode operation of a Fabry-Perot laser (FP-LD) subject to the optical injection from a tunable laser is investigated. The maximum side mode suppression ratio (SMSR) is 53 dB, and the locked wavelength range is about 46 nm, which can cover 58 International Telecommunication Union (ITU) wavelengths with 100 GHz spacing or 115 ITU wavelengths with 50 GHz spacing for wavelength division multiplexing (WDM) system. In the wavelength range front 1535 to 1569 nm, the SMSR is over 46 dB, and the frequency response of the injection-locked FP-LD can be improved with the proper wavelength detuning. (c) 2008 Wiley Periodicals, Inc.
Resumo:
The antibunching properties of the fluorescence from a two-level ideal system in a 12-fold quasiperiodic photonic crystal are investigated based on the calculated local density of states. We found that the antibunching phenomenon of the fluorescence from two-level ideal systems could be significantly changed by varying their positions, i.e., perfect antibunching and antibunching with damped Rabi oscillation phenomenon occurred in different positions and at different frequencies in photonic crystals as a result of the large differences in the local density of states. This study revealed that the multi-level coherence of fluorescence from a two-level ideal system could be manipulated by controlling the position of the two-level ideal system in photonic crystals and the emission frequency in the photonic band structure. Copyright (C) EPLA, 2008