951 resultados para Significance-driven computing
Resumo:
BACKGROUND: The intracellular signalling mechanisms that regulate ovarian follicle development are unclear; however, we have recently shown differences in the Akt and Erk signalling pathways in dominant compared to subordinate follicles. The aim of this study was to investigate the effects of inhibiting Akt and Erk phosphorylation on IGF- and gonadotropin- stimulated granulosa and theca cell function in vitro, and on follicle development in vivo. METHODS: Bovine granulosa and theca cells were cultured for six days and stimulated with FSH and/or IGF, or LH in combination with PD98059 (Erk inhibitor) and/or LY294002 (Akt inhibitor) and their effect on cell number and hormone secretion (estradiol, activin-A, inhibin-A, follistatin, progesterone and androstenedione) determined. In addition, ovarian follicles were treated in vivo with PD98059 and/or LY294002 in ewes on Day 3 of the cycle and follicles were recovered 48 hours later. RESULTS: We have shown that gonadotropin- and IGF-stimulated hormone production by granulosa and theca cells is reduced by treatment with PD98059 and LY294002 in vitro. Furthermore, treatment with PD98059 and LY294002 reduced follicle growth and oestradiol production in vivo. CONCLUSION: These results demonstrate an important functional role for the Akt and Erk signalling pathways in follicle function, growth and development.
Resumo:
The 3' untranslated regions (3'UTRs) of flaviviruses are reviewed and analyzed in relation to short sequences conserved as direct repeats (DRs). Previously, alignments of the 3'UTRs have been constructed for three of the four recognized flavivirus groups, namely mosquito-borne, tick-borne, and nonclassified flaviviruses (MBFV, TBFV, and NCFV, respectively). This revealed (1) six long repeat sequences (LRSs) in the 3'UTR and open-reading frame (ORF) of the TBFV, (2) duplication of the 3'UTR of the NCFV by intramolecular recombination, and (3) the possibility of a common origin for all DRs within the MBFV. We have now extended this analysis and review it in the context of all previous published analyses. This has been achieved by constructing a robust alignment between all flaviviruses using the published DRs and secondary RNA structures as "anchors" to reveal additional homologies along the 3'UTR. This approach identified nucleotide regions within the MBFV, NKV (no-known vector viruses), and NCFV 3'UTRs that are homologous to different LRSs in the TBFV 3'UTR and ORF. The analysis revealed that some of the DRs and secondary RNA structures described individually within each flavivirus group share common evolutionary origins. The 3'UTR of flaviviruses, and possibly the ORF, therefore probably evolved through multiple duplication of an RNA domain, homologous to the LRS previously identified only in the TBFV. The short DRs in all virus groups appear to represent the evolutionary remnants of these domains rather than resulting from new duplications. The relevance of these flavivirus DRs to evolution, diversity, 3'UTR enhancer function, and virus transmission is reviewed.
Resumo:
Proliferative kidney disease (PKD) is an emerging disease of salmonid fishes. It is provoked by temperature and caused by infective spores of the myxozoan parasite Tetracapsuloides bryosalmonae, which develops in freshwater bryozoans. We investigated the link between PKD and temperature by determining whether temperature influences the proliferation of T bryosalmonae in the bryozoan host Fredericella sultana. Herein we show that increased temperatures drive the proliferation of T bryosalmonae in bryozoans by provoking, accelerating and prolonging the production of infective spores from cryptic stages. Based on these results we predict that PKD outbreaks will increase further in magnitude and severity in wild and farmed salmonids as a result of climate-driven enhanced proliferation in invertebrate hosts, and urge for early implementation of management strategies to reduce future salmonid declines.
Resumo:
Objectives: This study aimed to investigate the efficacy of St. John's wort extract (SJW) as a treatment for premenstrual symptoms. Design: The study was a randomized, double-blinded, placebo-controlled trial, with two parallel treatment groups. After a no-treatment baseline cycle, volunteers were randomized to either SJW or placebo for a further two menstrual cycles. Settings/location: A postal trial conducted from The University of Reading, Berkshire, England. Subjects: One hundred and sixty-nine (169) normally menstruating women who experienced recurrent premenstrual symptoms were recruited onto the study. One hundred and twenty-five (125) completed the protocol and were included in the analysis. Interventions: Six hundred milligrams (600) mg of SJW (standardized to contain 1800 mug of hypericin) or placebo (containing lactose and cellulose). Outcome measure: A menstrual diary was used to assess changes in premenstrual symptoms. The anxiety-related subgroup of symptoms of this instrument was used as the primary outcome measure. Results: After averaging the effects of treatment over both treatment cycles it was found that there was a trend for SJW to be superior to placebo. However, this finding was not statistically significant. Conclusion: The possibility that this nonsignificant finding resulted from insufficient statistical power in the study, rather than a lack of efficacy of SJW, is discussed. Following this discussion the recommendation is made that, in future, similar studies should be powered to detect a minimum clinically relevant difference between treatments.
Resumo:
Blends of the poly(ether sulfone) derived from 4,4'-biphenol and 4,4'-dichlorodiphenylsulfone (Radel-R(TM)) with its homologous macrocyclic oligomers show greatly lowered melt viscosities relative to that of the parent polymer, potentially enabling more facile production and fabrication of fiber-reinforced composite materials. The macrocycles can then undergo entropically driven ring-opening polymerization in situ. The required blends can be obtained easily in one step, by carrying out polycondensations at concentrations lower than those usually used for polymer synthesis.
Resumo:
An amorphous, catechol-based analogue of PEEK ("o-PEEK") has been prepared by a classical step-growth polymerization reaction between catechol and 4,4'-difluorobenzophenone and shown to be readily soluble in a range of organic solvents. Copolymers with p-PEEK have been investigated, including an amorphous 50: 50 composition and a semicrystalline though still organic-soluble material comprising 70% p-PEEK. o-PEEK has also been obtained by entropy-driven ring-opening polymerization of the macrocyclic oligomers (MCO's) formed by cyclo-condensation of catechol with 4,4'-difluorobenzophenone under pseudo-high-dilution conditions. The principal products of this latter reaction were the cyclic dimer 3a (20 wt %), cyclic trimer 3b (16%) cyclic tetramer 3c (14%), cyclic pentamer 3d (13%) and cyclic hexamer 3e (12%). Macrocycles 3a-c were isolated as pure compounds by gradient column chromatography, and the structures of the cyclic dimer 3a and cyclic tetramer 3c were analyzed by single-crystal X-ray diffraction. A mixture of MCO's, 3, of similar composition, was obtained by cyclodepolymerization of high molar mass o-PEEK in dilute soluion.
Resumo:
A homologous series of macrocyclic oligoamides has been prepared in high yield by reaction of isophthaloyl chloride with m-phenylenediamine under pseudo-high-dilution conditions. The products were characterized by infrared and H-1 NMR spectroscopies, matrix assisted laser desorption-ionization time-of-flight mass spectrometry, and gel permeation chromatography (GPC). A series of linear oligomers was prepared for comparison. The macrocycles ranged in size from the cyclic trimer up to at least the cyclic nonamer (90 ring atoms). The same homologous series of macrocyclic oligomers was prepared in high yield by the cyclodepolymerization of poly(m-phenylene isophthalamide) (Nomex). Cyclodepolymerization was best achieved by treating a 1% w/v solution of the polymer in dimethyl sulfoxide containing calcium chloride or lithium chloride with 3-4 mol % of sodium hydride or the sodium salt of benzanilide at 150 degreesC for 70 h. Treatment of a concentrated solution of the macrocyclic oligomers (25% w/v) with 4 mol % of sodium hydride or the sodium salt of benzanilide in a solution of lithium chloride in dimethyl sulfoxide at 170 degreesC for 6 h resulted in efficient entropically driven ring-opening polymerizations to give poly(m-phenylene isophthalamide), characterized by infrared and H-1 NMR spectroscopies and by GPC. The molecular weights obtained were comparable with those of the commercial polymer.
Resumo:
Highly strained macrocyclic ether-ketones obtained by nickel-catalyzed cyclization of linear precursor oligomers undergo ring-opening polyinerization via ether exchange in the presence of nucleophilic initiators such as fluoride or phenoxide anions. Strain enthapies of these macrocycles, from DSC analyses of their exothermic ring-opening polymerization are in the range 50-90 kJ mol(-1). Melt-phase polymerization generally affords slightly cross-linked materials, but solution-phase polymerization at high macrocycle concentrations gives fully soluble, high molar mass polymers with inherent viscosities of up to 1.78 dL g(-1). Sequence-analysis of the resulting polymers by C-13 NMR shows that alternating or random monomer sequences may be obtained, depending on whether one or both aromatic rings adjacent to the ether linkages are activated toward nucleophilic attack.
Resumo:
Polymerizable macrocyclic biarylene-ether-ketones and biarylene-ether-sulfones are accessible from linear, bis(chloro)-terminated oligomers via nickel-catalyzed, intramolecular coupling under pseudo-high-dilution conditions. Single-crystal X-ray analyses of the resulting cyclo-oligomers reveal extremely distorted and highly strained geometries, with 4,4 '-biphenylene units showing deviations of up to 70 degrees from linearity.
Resumo:
The entropically-driven ring-opening polymerization of macrocyclic monomers (> ca. 14 ring atoms per repeat unit) and/or macrocyclic oligomers is a relatively new method of polymer synthesis that exploits the well-known phenomenon of ring-chain equilibria. It attracts interest because of its novel features. For example, these ring-opening polymerizations emit no volatiles and little or no heat. This review considers the principles of entropically-driven ring-opening polymerizations, gives selected examples and discusses potential applications. The latter include micromolding, high throughput syntheses and the synthesis of supramolecular polymers. Copyright (c) 2005 John Wiley T Sons, Ltd.
Resumo:
Three supramolecular complexes of Co(II) using SCN-/SeCN- in combination with 4,4'-dipyridyl-N,N'-dioxide (dpyo), i.e., {[Co(SCN)(2)(dpyo)(2)].(dpyo)}(n) ( 1), {[Co(SCN)(2)(dpyo)(H2O)(2)].(H2O)}(n) ( 2), {[Co(SeCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 3), have been synthesized and characterized by single-crystal X-ray analysis. Complex 1 is a rare example of a dpyo bridged two-dimensional (2D) coordination polymer, and pi-stacked dpyo supramolecular rods are generated by the lattice dpyo, passing through the rhombic grid of stacked layers, resulting in a three-dimensional (3D) superstructure. Complexes 2 and 3 are isomorphous one-dimensional (1D) coordination polymers [-Co-dpyo-Co-] that undergo self-assembly leading to a bilayer architecture derived through an R-2(2)(8) H-bonding synthon between coordinated water and dpyo oxygen. A reinvestigation of coordination polymers [Mn(SCN)(2)(dpyo)( H2O)(MeOH)](n) ( 4) and {[Fe(SCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 5) reported recently by our group [ Manna et al. Indian J. Chem. 2006, 45A, 1813] reveals brick wall topology rather than bilayer architecture is due to the decisive role of S center dot center dot center dot S/Se center dot center dot center dot Se interactions in determining the helical nature in 4 and 5 as compared to zigzag polymeric chains in 2 and 3, although the same R-2(2)(8) synthon is responsible for supramolecular assembly in these complexes.
Resumo:
Formation of a quasi-symmetrical mu(3)-carbonato-bridged self-assembled heteromolecular triangle of Ni(II), [(mu(3)-CO3){Ni-2(salmeNH)(2)(NCS)(2)}[Ni(salmeNH(2))(2)]center dot Et2O center dot H2O (HsalmeNH = 2-[(3-methylamino-propylimino)-methyl]-phenol) involves atmospheric CO2 uptake in a neutral medium, by spontaneous self-reorganization of the starting mononuclear Ni(II)-Schiff-base complex, [Ni(salmeNH)(2)]. The environment around Ni(II) in two of the subunits is different from the third one. The starting complex, (Ni(salmeNH)(2)], and one of the possible intermediate species, [Ni(salmeNH(2))(2)(NCS)(2)], which has a very similar coordination environment to that in the third Ni(II) center, have been characterized structurally. A plausible mechanism for the formation of such a triangle has also been proposed. The compound shows a very strong antiferromagnetic coupling. Fit as a regular triangular arrangement gave J = -53.1, g = 2.24, and R = 1.5 x 10(-4).