949 resultados para Signaling Pathways


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transforming growth factor beta-1 (TGF-β1) is a cytokine and neurotrophic factor whose neuromodulatory effects in Aplysia californica were recently described. Previous results demonstrated that TGF-β1 induces long-term increases in the efficacy of sensorimotor synapses, a neural correlate of sensitization of the defensive tail withdrawal reflex. These results provided the first evidence that a neurotrophic factor regulates neuronal plasticity associated with a simple form of learning in Aplysia, and raised many questions regarding the nature of the modulation. No homologs of TGF-β had previously been identified in Aplysia, and thus, it was not known whether components of TGF-β1 signaling pathways were present in Aplysia. Furthermore, the signaling mechanisms engaged by TGF-β1 had not been identified, and it was not known whether TGF-β1 regulated other aspects of neuronal function.^ The present investigation into the actions of TGF-β1 was initiated by examining the distribution of the type II TGF-β1 receptor, the ligand binding receptor. The receptor was widely distributed in the CNS and most neurons exhibited somatic and neuritic immunoreactivity. In addition, the ability of TGF-β1 to activate the cAMP/PKA and MAPK pathways, known to regulate several important aspects of neuronal function, was examined. TGF-β1 acutely decreased cAMP levels in sensory neurons, activated MAPK and triggered translocation of MAPK to the nucleus. MAPK activation was critical for both short- and long-term regulation of neuronal function by TGF-β1. TGF-β1 acutely decreased synaptic depression induced by low frequency stimuli in a MAPK-dependent manner. This regulation may result, at least in part, from the modulation of synapsin, a major peripheral synaptic vesicle protein. TGF-β1 stimulated MAPK-dependent phosphorylation of synapsin, a process believed to regulate synaptic vesicle mobilization from reserve to readily-releasable pools of neurotransmitter. In addition to its acute effect on synaptic efficacy, TGF-β1 also induced long-term increases in sensory neuron excitability. Whereas transient exposure to TGF-β1 was not sufficient to drive short-or long-term changes in excitability, prolonged exposure to TGF-β1 induced long-term changes in excitability that depended on MAPK. The results of these studies represent significant progress toward an understanding of the role of TGF-β1 in neuronal plasticity. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adenosine has been implicated to play a role in inflammatory processes associated with asthma. Most notable is adenosine's ability to potentiate mediator release from mast cells. Mast cells are bone marrow derived inflammatory cells that can release mediators that have both immediate and chronic effects on airway constriction and inflammation. Most physiological roles of adenosine are mediated through adenosine receptors. Four subtypes of adenosine receptors have been identified, A1, A2A, A2B and A 3. The mechanisms by which adenosine can influence the release of mediators from lung tissue mast cells is not understood due to lack of in vivo models. Mice deficient in the enzyme adenosine deaminase (ADA) have been generated. ADA controls the levels of adenosine in tissues and cells, and consequently, adenosine accumulates in the lungs of ADA-deficient mice. ADA-deficient mice develop features seen in asthmatics, including lung eosinophilia and mucus hypersecretion. In addition, lung tissue mast cell degranulation was associated with elevated adenosine in ADA-deficient lungs and can be prevented by ADA enzyme therapy. We established primary murine lung mast cell cultures, and used real time RT-PCR and immunofluorescence to demonstrate that A 2A, A2B and A3 receptors are expressed on murine lung mast cells. Studies using selective adenosine receptor agonists and antagonists and A3 receptor deficient (A3−/−) mast cells suggested that activation of A3 receptors could induce mast cell mediator release in vitro. Furthermore, this mediator release was associated with increases in intracellular Ca++ that appeared to be mediated through a Gi and PI3K pathway. In addition, nebulized A3 receptor agonist directly induced lung mast cell degranulation in wild type mice while having no effect in A3−/− mice. These results demonstrate that the A3 receptor plays an important role in adenosine mediated murine lung mast cell degranulation. Therefore, the A3 adenosine receptor and its signaling pathways may represent novel therapeutic targets for the treatment and prevention of asthma. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of IGF-1/IGF-1R signaling is evident in human cancers including breast, colon, prostate, and lung which have been shown to overexpress IGF-1. Also, serum levels of IGF-1 have been identified as a risk factor for these cancers. IGF-1 has been primarily shown to mediate its mitogenic effects through signaling pathways such as MAPK and PI3K/Akt. In this regard, BK5.IGF-1 transgenic mice were generated and these mice displayed hyperplasia and hyperkeratosis in the epidermis. In addition, these mice were also found to have elevated MAPK, PI3K, and Akt activities. Furthermore, overexpression of IGF-1 in epidermis can act as a tumor promoter. BK5.IGF-1 transgenic mice developed papillomas after initiation with DMBA without further treatment with a tumor promoter such as TPA. Previous data has also shown that inhibition of the PI3K/Akt signaling pathway by the inhibitor LY294002 was able to reduce the number of tumors formed by IGF-1 mediated tumor promotion. The current studies presented demonstrate that Akt may be the critical effector molecule in IGF-1/IGF-1R mediated tumor promotion. We have found that inhibition of PI3K/Akt by LY294002 inhibits cell cycle components, particularly those associated with G1 to S phase transition including Cyclin D1, Cyclin E, E2F1, and E2F4, that are elevated in epidermis of BK5.IGF-1 transgenic mice. We have also demonstrated that Akt activation may be a central theme in early tumor promotion. In this regard, treatment with diverse tumor promoters such as TPA, okadaic acid, chrysarobin, and UVB was shown to activate epidermal Akt and its downstream signaling pathways after a single treatment. Furthermore, overexpression of Akt targeted to the basal cells of the epidermis led to hyperplasia and increased labeling index as determined by BrdU staining. These mice also had constitutively elevated levels of cell cycle components, particularly Cyclin D1, Cyclin E, E2F1, E2F4, and Mdm-2. These mice developed skin tumors following initiation with DMBA and were hypersensitive to the tumor promoting effects of TPA. Collectively, these studies provide evidence that Akt activation plays an important role in the process of mouse skin tumor promotion. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

14-3-3 is a family of highly conserved and ubiquitously expressed proteins in eukaryotic organisms. 14-3-3 isoforms bind in a phospho-serine/threonine-dependent manner to a host of proteins involved in essential cellular processes including cell cycle, signal transduction and apoptosis. We fortuitously discovered 14-3-3 zeta overexpression in many human primary cancers, such as breast, lung, and sarcoma, and in a majority of cancer cell lines. To determine 14-3-3 zeta involvement in breast cancer progression, we used immunohistochemical analysis to examine 14-3-3 zeta expression in human primary invasive breast carcinomas. High 14-3-3 zeta expression was significantly correlated with poor prognosis of breast cancer patients. Increased expression of 14-3-3 zeta was also significantly correlated with elevated PKB/Akt activation in patient samples. Thus, 14-3-3 zeta is a marker of poor prognosis in breast cancers. Furthermore, up-regulation of 14-3-3 zeta enhanced malignant transformation of cancer cells in vitro. ^ To determine the biological significance of 14-3-3 zeta in human cancers, small interfering RNAs (siRNA) were used to specifically block 14-3-3 zeta expression in cancer cells. 14-3-3 zeta siRNA inhibited cellular proliferation by inducing a G1 arrest associated with up-regulation of p27 KIP1 and p21CIP1 cyclin dependent kinase inhibitors. Reduced 14-3-3 zeta inhibited PKB/Akt activation while stimulating the p38 signaling pathway. Silencing 14-3-3 zeta expression also increased stress-induced apoptosis by caspase activation. Notably, 14-3-3 zeta siRNA inhibited transformation related properties of breast cancer cells in vitro and inhibited tumor progression of breast cancer cells in vivo. 14-3-3 zeta may be a key regulatory factor controlling multiple signaling pathways leading to tumor progression. ^ The data indicate 14-3-3 zeta is a major regulator of cell growth and apoptosis and may play a critical role in the development of multiple cancer types. Hence, blocking 14-3-3 zeta may be a promising therapeutic approach for numerous cancers. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several immune pathologies are the result of aberrant regulation of T lymphocytes. Pronounced T cell proliferation can result in autoimmunity or hematologic malignancy, whereas loss of T cell activity can manifest as immunodeficiency. Thus, there is a critical need to characterize the signal transduction pathways that mediate T cell activation so that novel and rational strategies to detect and effectively control T cell mediated disease can be achieved. ^ The first objective of this dissertation was to identify and characterize novel T cell regulatory proteins that are differentially expressed upon antigen induced activation. Using a functional proteomics approach, two members of the prohibitin (Phb) family of proteins, Phb1 and Phb2, were determined to be upregulated upon activation of primary human T cells. Furthermore, their regulated expression was dependent upon CD3 and CD28 signaling pathways which synergistically increased their expression. In contrast to previous reports of Phb nuclear localization, both proteins were determined to localize to the mitochondrial inner membrane of human T cells. Additionally, novel Phb phosphorylation sites were identified and characterized using mass spectrometry, phosphospecific antibodies and site directed mutagenesis. ^ Prohibitins have been proposed to play important roles in cancer development however the mechanism of action has not been elucidated. The second objective of this dissertation was to define the functional role of Phbs in T cell activity, survival and disease. Compared to levels in normal human T cells, Phb expression was higher in the human tumor T cell line Kit225 and subcellularly localized to the mitochondrion. Ablation of Phb expression by siRNA treatment of Kit225 cells resulted in disruption of mitochondrial membrane potential and significantly enhanced their sensitivity to cell death, suggesting they serve a protective function in T cells. Furthermore, Q-RT-PCR analysis of human oncology cDNA expression libraries indicated the Phbs may represent hematological cancer biomarkers. Indeed, Phb1 and Phb2 protein levels were 6-10 fold higher in peripheral blood mononuclear cells isolated from malignant lymphoma and multiple myeloma patients compared to healthy individuals. ^ Taken together, Phb1 and Phb2 are novel phosphoproteins upregulated during T cell activation and transformation to function in the maintenance of mitochondrial integrity and perhaps energy metabolism, thus representing previously unrecognized intracellular biomarkers and therapeutic targets for regulating T cell activation and hematologic malignancies. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Breast cancer is the second most common farm of cancers and the second leading cause of cancer death for American women. Clinical studies indicate inflammation is a risk factor for breast cancer development. Among the cytokines and chemokines secreted by the infiltrating inflammatory cells, tumor necrosis factor a (TNFα) is considered one of the most important inflammatory factors involved in inflammation-mediated tumorigenesis. ^ Here we found that TNFα/IKKβ signaling pathway is able to increase tumor angiogenesis through activation of mTOR pathway. While investigating which molecule in the mTOR pathway involved in TNFα/IKKβ-mediated mTOR activation, our results showed that IKKβ physically interacts with and phosphorylates TSC1 at Ser487 and Ser511 in vitro and in vivo. Phosphorylation of TSC1 by IKKβ inhibits its association with TSC2, alters TSC2 membrane localization, and thereby activates mTOR. In vitro angiogenesis assays and orthotopic breast cancer model reveals that phosphorylation of TSC1 by IKKβ enhances VEGF expression, angiogenesis and culminates in tumorigenesis. Furthermore, expression of activated IKKβ is associated with TSC1 Ser511 phosphorylation and VEGF production in multiple tumor types and correlates with poor clinical outcome of breast cancer patients. ^ Furthermore, dysregulation of tumor suppressor FOXO3a contributes to the development of breast cancer. We found that overexpression of IKKβ led to inhibition of FOXO3a-mediated transactivation activity. While investigating the underlying mechanisms of IKKβ-mediated dysregulation of FOXO3a, our results showed that IKKβ physically associated with FOXO3a and phosphorylated FOXO3a at Ser644 in vitro and in vivo. The phosphorylation of FOXO3a by IKKβ altered its subcellular localization from nucleus to cytoplasm and promoted its degradation through ubiquitin-proteasome pathway. Mutation of FOXO3a at Ser644 prevented IKKβ-induced ubiquitination and degradation. In vitro cell proliferation assay and orthotopic breast cancer model revealed that phosphorylation of FOXO3a by IKKβ overrode FOXO3a-mediated repression of tumor progression. ^ In conclusion, our findings identify IKKβ-mediated suppressions of both TSC1 and FOXO3a are critical for inflammation-mediated breast cancer development through increasing tumor angiogenesis and evading apoptosis, respectively. Understanding the role of IKKβ in both FOXO3a and TSC/mTOR signaling pathways provides a critical insight of inflammation-mediated diseases and may provide a target for clinical intervention in human breast cancer. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

T cell activation requires antigen-specific T cell receptor signals that spatially and temporally coincide with a second costimulatory signal. CD28 and α4β1 integrin both function as T cell costimulators, but their individual mechanisms remain elusive. By directly comparing CD3-dependent functions and signaling pathways employed by these two costimulatory receptors, aspects of their individual signaling mechanisms are explored. We determined that CD28 and α4β1 integrins both use Src-family kinase Lck and MAPK Erk, but to different extents and functional ends. After identifying functional differences between CD28 and integrin costimulatory pathways, the focus of the study turned to integrin signaling in naïve and memory T cell subsets. CD45RO T cells are fully co-activated by natural β1 integrin ligands fibronectin (FN) and VCAM-1, β1 monoclonal antibody 33B6, as well as α4β1 monoclonal antibody 19H8 which binds a combinatorial epitope of the α4β1 heterodimer. While CD28 fully costimulates CD45RA T cells, the degree of activation from integrin ligands varies. FN costimulates CD3-dependent proliferation, IL-2 secretion, and early activation markers CD25 and CD69. However, β1 antibody 33B6, which binds to the same T cell integrins (α4β1 and α5β1) as natural ligand FN, failed to costimulate proliferation or IL-2 in the CD45RA subset, but retained the ability to regulate CD25 and CD69. Unique aspects of 19H8 signaling involve early Erk activation and IL-2 independent proliferation. Signaling defects through 33B6 ligation correlates with poor adhesion under fluid flow conditions, suggesting a cytoskeletal basis for signaling. All together, these data provide evidence for a mechanism of α4β1 integrin signaling and describe functional differences between naïve and memory T cells. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The X-linked mouse Rhox gene cluster contains over 30 homeobox genes that are candidates to regulate multiple steps in male and female gametogenesis. The founding member of the Rhox gene cluster, Rhox5, is an androgen-dependent gene expressed in Sertoli cells that promotes the survival and differentiation of the adjacent male germ cells. To decipher downstream signaling pathways of Rhox5, I used in vivo and in vitro microarray profiling to identify and characterize downstream targets of Rhox5 in the testis. This led to the identification of many Rhox5 -regulated genes, two of which I focused on in more detail. One of them, Unc5c, encodes a pro-apoptotic receptor with tumor suppressor activity that I found is negatively regulated by Rhox5 through a Rhox5-response element in the Unc5c 5' untranslated region (5' UTR). Examination of other mouse Rhox family members revealed that Rhox2 and Rhox3 also have the ability to downregulate Unc5c expression. The human RHOX protein RHOXF2 also had this ability, indicating that Unc5c repression is a conserved Rhox-dependent response. The repression of Unc5c expression by Rhox5 may, in part, mediate Rhox5's pro-survival function in the testis, as I found that Unc5c mutant mice have decreased germ cell apoptosis in the testis. This along with my other data leads me to propose a model in which Rhox5 is a negative regulator upstream of Unc5c in a Sertoli-cell pathway that promotes germ-cell survival. The other Rhox5-regulated gene that I studied in detail is insulin II (Ins2). Several lines of evidence, including electrophoretic mobility shift anaylsis, promoter mutagenesis, and chromatin immuoprecipitation analysis indicated that Ins2 is a direct target of Rhox5. Structure-function analysis identified homeodomain residues and the RHOX5 amino-terminal domain crucial for conferring Ins2 inducibility. Rhox5 regulates not only the Ins2 gene but also genes encoding other secreted proteins regulating metabolism (adiponectin and resistin), the rate-liming enzyme for monosaturated fatty acid biosynthesis (SCD-1), and transcription factors crucial for regulating metabolism (the nuclear hormone receptor PPARγ). I propose that the regulation of some or all of these molecules in Sertoli cells is responsible for the Rhox5-dependent survival of the adjacent germ cells. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Primary cutaneous melanoma is a cancer arising from melanocytes in the skin. In recent decades the incidence of this malignancy has increased significantly. Mortality rates are high for patients with tumors measuring over a few millimeters in thickness. Response rates to conventional radiation and chemotherapy are very low in patients with metastatic melanoma. New therapies targeting melanoma’s aberrant cell signaling pathways such as the MAP Kinase pathway are being developed. Mutations of NRAS and BRAF genes are quite common in cutaneous melanoma and lead to constitutive activation of the MAP Kinase pathway. This study tests the hypothesis that NRAS and BRAF mutations increase as a tumor progresses from the noninvasive radial growth phase (RGP) to the invasive vertical growth phase (VGP). Laser capture microdissection was used to obtain separate, pure tumor DNA samples from the RGP and VGP of thirty primary cutaneous melanomas. PCR was used to amplify NRAS exon 2 and BRAF exon 15 tumor DNA. The amplified DNA was sequenced and analyzed for mutations. An overall mutation rate of 74% was obtained for the twenty-three melanomas in which there were complete sequence results. With the exception of one melanoma NRAS and BRAF mutations were mutually exclusive. All seven NRAS exon 2 mutations involved codon 61. Three of these melanomas had mutations in both the RGP and VGP. The remaining four tumors were wild type for NRAS exon 2 in the RGP but mutated in the VGP. Of the fifteen BRAF exon 15 mutated melanomas all but one involved codon 600. Twelve of the fifteen BRAF exon 15 mutations were the T1799A type. Nine of the fifteen BRAF mutated tumors had the same mutation in both the RGP and VGP. Five of fifteen melanomas had wild type RGP DNA and BRAF exon 15 mutated VGP DNA. A single melanoma had BRAF exon 15 mutated DNA in the RGP and wild type DNA in the VGP. Overall, these results suggest a trend toward the acquisition of NRAS and BRAF mutations as cutaneous melanomas change from a noninvasive to an invasive, potentially deadly cancer.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and often leads to the development of cancer. In response to double stranded breaks (DSBs) as induced by ionizing radiation (IR), generated during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in T and B cells of lymphoid origin, the protein kinases ATM and ATR are central players that activate signaling pathways leading to DSB repair. p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. In addition to its well established role in DSB repair, multiple lines of evidence implicate 53BP1 in transcription which stem from its initial discovery as a p53 binding protein in a yeast two-hybrid screen. However, the mechanisms behind the role of 53BP1 in these processes are not well understood. ^ 53BP1 possesses several motifs that are likely important for its role in DSB repair including two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. In addition to these motifs, we identified a glycine and arginine rich region (GAR) upstream of the Tudor domains, a sequence that is oftentimes serves as a site for protein arginine methylation. The focus of this project was to characterize the methylation of 53BP1 and to evaluate how methylation influenced the role of 53BP1 as a tumor suppressor. ^ Using a variety of biochemical techniques, we demonstrated that 53BP1 is methylated by the PRMT1 methyltransferase in vivo. Moreover, GAR methylation occurs on arginine residues in an asymmetric manner. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. While investigating the role of arginine methylation in 53BP1 function, we discovered that 53BP1 associates with proteins of the general transcription apparatus as well as to other factors implicated in coordinating transcription with chromatin function. Collectively, these data support a role for 53BP1 in regulating transcription and provide insight into the possible mechanisms by which this occurs. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Allergic asthma is characterized by airflow obstruction, airway hyperresponsiveness (AHR) and chronic airway inflammation. We and others have reported that complement component C3 and the anaphylatoxin C3a receptor promote while C5 protects against the development of the biological and physiological hallmarks of allergic lung disease in mice. In this study, we assessed if the protective responses could be mediated by C5a, an activation-induced C5 cleavage product. Mice with ablation of the C5a receptor (C5aR) either by genetic deletion or by pharmacological blockade exhibited significantly exacerbated AHR compared to allergen-challenged wild-type (WT) mice. However, there were no significant differences in many of the other hallmarks of asthma such as airway infiltration by eosinophils or lymphocytes, pulmonary IL-4-producing cell numbers, goblet cell metaplasia, mucus secretion or total serum IgE levels. In contrast to elevated AHR, numbers of IL-5 and IL-13 producing pulmonary cells, and IL-5 and IL-13 protein levels, were significantly reduced in allergen-challenged C5aR-/- mice compared to allergen-challenged WT mice. Administration of a specific cysteinyl leukotriene receptor 1 (cysLT1R) antagonist before each allergen-challenge abolished AHR in C5aR-/- as well as in WT mice. Pretreatment with a C3aR antagonist dose-dependently reduced AHR in allergen-challenged WT and C5aR-/- mice. Additionally, allergen-induced upregulation of pulmonary C3aR expression was exaggerated in C5aR-/- mice compared to WT mice. In summary, deficiency or antagonism of C5aR in a mouse model of pulmonary allergy increased AHR, which was reversed or reduced by blockade of the cysLT1R and C3aR, respectively. In conclusion, this study suggests that C5a and C5aR mediate protection against AHR by suppressing cysLT and C3aR signaling pathways, which are known to promote AHR. This also supports important and opposing roles of complement components C3a/C3aR and C5a/C5aR in AHR. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

GS-9219 is a cell-permeable double-prodrug of the acyclic nucleotide analogue 9-(2-phosphonylmethoxyethyl)guanine (PMEG). The conversion of GS-9219 to its active metabolite, PMEG diphosphate (PMEGpp), involves several intracellular enzymatic reactions which reduces the concentration of nephrotoxic PMEG in plasma. PMEGpp competes with the natural substrate, dGTP, for incorporation by DNA polymerases. The lack of a 3'-hydroxyl moiety makes PMEGpp a de facto DNA chain-terminator. The incorporation of PMEGpp into DNA during DNA replication causes DNA chain-termination and stalled replication forks. Thus, the primary mechanism of action of GS-9219 in replicating cells is via DNA synthesis inhibition. GS-9219 has substantial antiproliferative activity against activated lymphocytes and tumor cell lines of hematological malignancies. Tumor cell proliferation was significantly reduced as measured by PET/CT scans in dogs with advanced-stage, spontaneously occurring non-Hodgkin's lymphoma (NHL).^ The hypothesis of this dissertation is that the incorporation of PMEGpp into DNA during repair re-synthesis would result in the inhibition of DNA repair and accumulation of DNA damage in chronic lymphocytic leukemia (CLL) cells and activate signaling pathways to cell death.^ To test this hypothesis, CLL cells were treated with DNA-damaging agents to stimulate nucleotide excision repair (NER) pathways, enabling the incorporation of PMEGpp into DNA. When NER was activated by UV, PMEGpp was incorporated into DNA in CLL cells. Following PMEGpp incorporation, DNA repair was inhibited and led to the accumulation of DNA strand breaks. The combination of GS-9219 and DNA-damaging agents resulted in more cell death than the sum of the single agents alone. The presence of DNA strand breaks activated the phosphatidylinositol 3-kinase-like protein kinase (PIKK) family members ataxia-telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK). The activated ATM initiated signaling to the downstream target, p53, which was subsequently phosphorylated and accumulated to exert its apoptotic functions. P53-targeted pro-apoptotic genes, Puma and Bax, were upregulated and activated when DNA repair was inhibited, likely contributing to cell death. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wound healing is a conserved survival response whose function is to restore the integrity of the tissue after physical trauma. Despite numerous studies in the wound healing field, the signals and pathways that orchestrate and control the wound healing program are still not entirely known. To identify additional signals and pathways that regulate epidermal wound repair in Drosophila larvae, we performed a pilot in vivo RNAi screen using a live reporter for epidermal morphology and a wounding assay. From our pilot screen we identified Pvr, the Drosophila homolog of the vertebrate PDGF/VEGF receptors, and six other genes as epidermal wound healing genes. Morphological analysis of wound-edge cells lacking Pvr or the Drosophila Jun N-terminal Kinase (JNK), previously implicated in larval wound closure, suggest that Pvr signaling leads to cell process extension into the wound site while JNK mediates transient dedifferentiation of wound-edge epidermal cells. Furthermore, we found that one of the three known Pvr ligands, Pvf1, is also required for epidermal wound closure. Through tissue-specific knock down and rescue experiments, we propose a model in which epidermally-produced Pvf1 may be sequestered into the hemolymph (blood) and that tissue damage locally exposes blood-borne Pvf1 to Pvr receptors on epidermal cells at the wound edge, thus initiating epidermal cell process extension and migration into the wound gap. Together, our data suggest that the Pvr and JNK signaling pathways act in parallel to control different aspects of wound closure and that PDGF/VEGF ligands and receptors may have a conserved autocrine role in epidermal wound closure. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lysophosphatidic acid (LPA) is a bioactive phospholipid and binds to its receptors, a family of G protein-coupled receptors (GPCR), which initiates multiple signaling cascades and leads to activation of several transcription factors, including NF-κB. NF-κB critically regulates numerous gene expressions, and is persistently active in many diseases. In our previous studies, we have demonstrated that LPA-induced NF-κB activation is dependent on a novel scaffold protein, CARMA3. However, how CARMA3 is recruited to receptor remains unknown. β-Arrestins are a family of proteins involved in desensitization of GPCR signaling. Additionally, β-arrestins function as signaling adaptor proteins, and mediate multiple signaling pathways. Therefore, we have hypothesized that β-arrestins may link CARMA3 to LPA receptors, and facilitate LPA-induced NF-κB activation. ^ Using β-arrestin-deficient MEFs, we found that β-arrestin 2, but not β-arrestin 1, was required for LPA-induced NF-κB activation. Also, we showed that the expression of NF-κB-dependent cytokines, such as interlukin-6, was impaired in β-arrestin 2-deficient MEFs. Mechanistically, we demonstrated the inducible association of endogenous β-arrestin 2 and CARMA3, and we found the CARD domain of CARMA3 interacted with 60-320 residues of β-arrestin 2. To understand why β-arrestin 2, but not β-arrestin 1, mediated NF-κB activation, we generated β-arrestin mutants. However, some mutants degraded quickly, and the rest did not rescue NF-κB activation in β-arrestin-deficient MEFs, though they had similar binding affinities with CARMA3. Therefore, it indicates that slight changes in residues may determine the different functions of β-arrestins. Moreover, we found β-arrestin 2 deficiency impaired LPA-induced IKK kinase activity, while it did not affect LPA-induced IKKα/β phosphorylation. ^ In summary, our results provide the genetic evidence that β-arrestin 2 serves as a positive regulator in NF-κB signaling pathway by connecting CARMA3 to LPA receptors. Additionally, we demonstrate that β-arrestin 2 is required for IKKα/β activation, but not for the inducible phosphorylation of IKKα/β. Because the signaling pathways around the membrane-proximal region of LPA receptors and GPCRs are quite conserved, our results also suggest a possible link between other GPCRs and CARMA3-mediated NF-κB activation. To fully define the role of β-arrestins in LPA-induced NF-κB signaling pathways will help to identify new drug targets for clinical therapeutics.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MEKK3, a member of the MAP3K family, is involved in regulating multiple MAPK and NF-κB pathways. The MAPK and NF-κB signaling pathways are important in regulating T cell functions. MEKK3 is expressed through the development of T cell and also in subsets of T cell in the peripheral. However, the specific role of MEKK3 in T cell function is unknown. To reveal the in vivo function of MEKK3 in T cells, I have generated MEKK3 T cell conditional knock-out mice. Despite a normal thymus development in the conditional knock-out mice, I observed a decrease in the number of peripheral T-cells and impaired T-cell function in response to antigen stimulation. T cells undergo homeostatic proliferation under lymphopenia condition, a process called lymphopenia-induced proliferation (LIP). Using a LIP model, I demonstrated that the reduction of peripheral T cell number is largely due to a severe impairment of the self-antigen/MHC mediated T cell homeostasis. Upon anti-CD3 stimulation, the proliferation of MEKK3-deficient T cell is not significantly affected, but the production of IFNγ by naïve and effector CD4 T cells are markedly decreased. Interestingly, the IL-12/IL-18 driven IFNγ production and MAPK activation in MEKK3-deficient T cells is not affected, suggesting that MEKK3 selectively mediates the TCR induced MAPK signaling. Furthermore, I found that MEKK3 is activated by TCR stimulation in a RAC1/2 dependent manner, but not by IL-12/IL-18 stimulation. Finally, I showed that basal level of ERK and JNK activation is defective under LIP condition. I showed that the TCR induced ERK, JNK and p38 MAPK activation is also defective in MEKK3 deficient CD4 T cells. Taken together, my data demonstrate a crucial role of MEKK3 in T cell homeostasis and IFNγ production through regulating the TCR mediated MAPK pathway. ^