988 resultados para Shrimp Penaeus-monodon
Resumo:
西昆仑山阿卡孜岩体是该区已知的最古老侵入体。岩体侵入于太古代赫罗斯坦群(TTG岩系)中。获得最新的单颗粒锆石SHRIMP年龄为2426±46Ma。岩石地球化学研究表明,岩石具有高碱度富K特征;∑REE为409.94×10^-6~787.76×10^-6,6Eu为0.48~0.73;微量元素显示富集大离子元素。综合分析该岩体地质地球化学特征,认为该岩体形成于晚太古代-古元古代初期碰撞后拉张背景,是TTG岩系(赫罗斯坦群)重熔的结果。这对研究西昆仑山早前寒武纪陆壳增生及构造演化提供了重要的地质资料。
Resumo:
The invasive North American amphipod Gammarus tigrinus is successfully established in Lough Neagh, Northern Ireland. Gammarus tigrinus is increasingly recognized as having significant predatory impacts on macroinverebrates, contrary to the accepted functional feeding group status of Gammarus species. The native opossum shrimp Mysis relicta overlaps in habitat use with G. tigrinus. However, its interaction with benthic macroinvertebrates is rarely appreciated. Mutual predatory interactions between G. tigrinus and M. relicta were assessed in a series of laboratory experiments. Gammarus tigrinus actively preyed on adult and juvenile M. relicta at a range of spatial scales. Females and recently molted M. relicta were particularly vulnerable to predation. Mysis relicta did not prey on adult G. tigrinus, but rapidly eliminated juvenile G. tigrinus in microcosms. Changes in dissolved 02 saturation did not alter the predatory interaction between these species. Microhabitat use by M. relicta was altered in the presence of G. tigrinus, and the presence of G. tigrinus facilitated fish predation on M. relicta. A balance of mutual predatory pressure between these invasive and native species may explain their coexistence. Both species are likely to be strongly interactive with other macroinvertebrates in both native and invasive ranges.
Resumo:
The ability to predict the likely ecological impacts of invasive species in fresh waters is a pressing research requirement. Whilst comparisons of species traits and considerations of invasion history have some efficacy in this respect, we require robust methods that can compare the effects of native and invasive species. Here, we utilise comparative functional responses and prey selectivity experiments to understand and predict the ecological impact of an invader as compared to a native. We compared the predatory functional responses of an emerging invasive species in Europe, the 'killer shrimp', Dikerogammarus villosus, and an analogous native species, Gammarus pulex, towards three representative prey species: Asellus aquaticus, Daphnia magna and Chironomus sp. Furthermore, as ecological impact may be greater for invasive species with more indiscriminate feeding habits, we compared the selectivity for the three prey types between the invasive and native species. In both the presence and absence of experimental habitats, large D. villosus, and those matched for body size with G. pulex, generally showed higher (Type II) functional responses than G. pulex, with the invasive species exhibiting higher maximum feeding rates. Further, D. villosus exhibited significantly more indiscriminate prey selection compared with G. pulex, a trait that became more evident as the invader increased in size. Differences in functional responses and prey selectivity were prey species specific, with higher to lower predicted impacts in the order A. aquaticus, D. magna and Chironomus sp. This is in accord with the impact of this invasive species on macroinvertebrates in the field. We thus provide understanding of the known ecological impact of D. villosus and discuss the utility of the phenomenological use of comparative functional responses and resource use as a tool through which the potential ecological impacts of invasive species may be identified. © 2013 John Wiley & Sons Ltd.
Resumo:
Biological invasions continue to exert pressure on ecosystems worldwide and we thus require methods that can help understand and predict the impacts of invasive species, on both native species and previously established invaders. Comparing laboratory derived functional responses among invasive and native predators has emerged as one such method, providing a robust proxy for field impacts. We used this method to examine the likely impacts of the Ponto–Caspian amphipod Dikerogammarus haemobaphes, known as the “demon shrimp”, a little investigated invader in European freshwaters that has recently established in the British Isles. We compared the functional responses on two prey species of D. haemobaphes with two other amphipod species: Dikerogammarus villosus, a congeneric invasive with well-documented impacts on macro-invertebrate communities and a native amphipod, Gammarus pulex. Prey species were native Chironomus sp. and the invasive Chelicorophium curvispinum, a tube-building amphipod also originating from the Ponto–Caspian region. D. villosus showed higher Type II functional responses towards both prey species than did D. haemobaphes and G. pulex, with the latter two predators exhibiting similar impacts on the native prey. However, D. haemobaphes had higher functional responses towards the invasive C. curvispinum than did G. pulex, both when prey individuals were tubeless and resident in their protective mud tubes. Thus, we demonstrate that functionally equivalent invasive congeners can show significantly different impacts on prey, regardless of shared evolutionary history. We also show that some predatory invaders can have impacts on native prey equivalent to native predator impacts, but that they can also exert significant impacts on previously introduced prey. We discuss the importance of invasion history and prey identity when attempting to understand and predict the impacts of new invaders.